Skip to main content
Log in

Abstract

In a future D/T fusion reactor the walls of the vessel containing the magnetically confined hot plasma have to stand simultaneously very high power, particle and neutron loads. In today’s high temperature plasma experiments at the areas of the highest load, i.e. the divertor and the limiters, W, Mo and Carbon (CFC) are used and Be, W, Mo, Inconel and stainless steel are at the other wall areas. These materials are also envisaged for future bigger fusion experiments, such as ITER [1–3]. The resistance of these materials to the different expected higher loads in a fusion reactor is only partly known and more investigations are needed with respect to find better materials and/or a modification of the divertor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Aymar, V. Chuyanov, and M. Huget, in Proc. 16 th IAEA Fusion Energy Conf., Montreal, Canada, 1997 (IAEA, Vienna, 1998).

    Google Scholar 

  2. R. Aymar et al., J. Nucl. Mater. 307–311, 1 (2002).

    Article  Google Scholar 

  3. G. Federici et al., J. Nucl. Mater. 290–293, 260 (2001).

    Article  Google Scholar 

  4. G. M. McCracken and P. Stott, Fusion, the Energy Source of the Universe. Complimentary Science Series (Elsevier, Amsterdam, 2005).

    Google Scholar 

  5. D. J. Rose and M. Clark, Jr., Plasmas and Controlled Fusion (MIT, Cambridge, MA, 1961).

    MATH  Google Scholar 

  6. U. Schumacher, Fusions Forschung. Eine Einfuhrung (Wissenschaftliche Buchgesellschaft, Darmstadt, 1993).

    Google Scholar 

  7. F. Engelmann, Physics of Plasma-Wall Interactions in Controlled Fusion, NATO ASI Ser. B: Physics, Vol. 113, p. 15 (Plenum, New York, London, 1984).

    Google Scholar 

  8. L. A. Artsimovich, in Plasmaphysics and Contr. Nucl. Fusion Research, Proc. of the 3rd Intern. Conf., Novosibirsk, 1968 (IAEA, Vienna, 1969), p. 175.

    Google Scholar 

  9. L. A. Artsimovich, Nucl. Fusion 12, 215 (1972).

    CAS  Google Scholar 

  10. H. P. Furth, Nucl. Fusion 15, 487 (1975).

    ADS  Google Scholar 

  11. L. A. Artsimovich, Controlled Thermonuclear Reactions (Oliver and Boyd, London, Edinburg, 1994).

    Google Scholar 

  12. J. A. Wesson, Tokamaks, Oxford Eng. Sci. Ser. 48 (Calderon, Oxford, 1997).

    Google Scholar 

  13. L. Spitzer, Phys. Fluids 1, 245 (1958).

    Article  MathSciNet  ADS  Google Scholar 

  14. L. Spitzer, Sci. Am. 109, 28 (1958).

    Article  Google Scholar 

  15. L. Spitzer, Plasma Physics and Thermonuclear Research, Progress in Nuclear Energy, Ser. XI (Pergamon, London, New York, Paris, Los Angeles, 1959), p. 107.

    Google Scholar 

  16. G. Grieger, H. Renner, and H. Wobig, Nucl. Fusion 25, 1231 (1985).

    CAS  Google Scholar 

  17. G. Grieger et al., Phys. Fluids B 4, 2081 (1992).

    Article  CAS  ADS  Google Scholar 

  18. B. A. Carreras, G. Grieger, and J. H. Harries, Nucl. Fusion 28, 1613 (1988).

    CAS  Google Scholar 

  19. F. Herrnegger, F. Rau, and H. Wobig, Max Plank Inst. Rep. IPP 2/343 (Garching, 1999).

  20. A. A. Galeev and R. Z. Sagdeev, Nucl. Fusion, Suppl., 45 (1972).

  21. V. S. Chan, C. M. Greenfield, and L. L. Lao, Nucl. Fusion 40, 1137 (2000).

    Article  CAS  ADS  Google Scholar 

  22. R. H. Bickerton, J. W. Connor, and J. B. Taylor, Nature 229, 110 (1972).

    ADS  Google Scholar 

  23. M. Murakami, H. E. St. John, T. A. Carsper, et al., Nucl. Fusion 40, 1257 (2000).

    Article  CAS  ADS  Google Scholar 

  24. M. Murakami, J. D. Callen, and L. A. Berry, Nucl. Fusion 16, 437 (1976).

    Google Scholar 

  25. N. Ohyabu, Nucl. Fusion 9, 1491 (1979).

    ADS  Google Scholar 

  26. E. Tsitrone, J. Nucl. Mater. 363–365, 12 (2007).

    Article  Google Scholar 

  27. Proc. of IAEA Techn. Committee Meeting on Inductive Current Drive in Tokamaks, Report CLM-CD (Culham Labor., 2003).

  28. St.-Laurent, Nucl. Fusion 40, 1245 (2000).

    Google Scholar 

  29. T. Oikawa, Nucl. Fusion 40, 1245 (2000).

    Article  Google Scholar 

  30. O. Gruber, R. Wolf, et al., Nucl. Fusion 40, 1145 (2000).

    Article  CAS  ADS  Google Scholar 

  31. B. B. Kadomtsev, Sov. J. Plasma Phys. 1, 389 (1976).

    Google Scholar 

  32. M. Murakami, M. J. D. Callen, and L. A. Berry, Nucl. Fusion 16, 437 (1976).

    Google Scholar 

  33. A. Janos, E. D. Fredrickson, K. M. McGuire, et al., J. Nucl. Mater. 196–198, 602 (1992).

    Article  Google Scholar 

  34. G. Pautasso, S. Egorov, and Ch. Tichmann, J. Nucl. Mater. 290–293, 1045 (2002).

    Google Scholar 

  35. K. H. Finken, A. Krämer-Flecken, G. Mank, and S. S. Abdullqev, J. Nucl. Mater. 290–293, 1064 (2003).

    Google Scholar 

  36. S. von Goeler, W. Stodiek, and N. Sauthoff, Phys. Rev. Lett. 33, 1201 (1974).

    Article  ADS  Google Scholar 

  37. B. Lipschultz, E. S. Marmar, M. M. Pickerell, et al., Nucl. Fusion 24, 977 (1984).

    CAS  Google Scholar 

  38. S. Neuhauser, J. Schneider, and R. Wunderlich, Nucl. Fusion 26, 1679 (1986).

    CAS  Google Scholar 

  39. F. Wagner et al., Phys. Rev. Lett. 49, 1408 (1982).

    Article  CAS  ADS  Google Scholar 

  40. G. Grieger, H. Renner, and H. Wobig, Nucl. Fusion 25–35, 1231 (1985).

    Google Scholar 

  41. H. Renner, J. Boscary, V. Erckmann, et al., Nucl. Fusion 40, 1083 (2000).

    Article  CAS  ADS  Google Scholar 

  42. D. P. Ivanov, Nucl. Fusion 40, 1245 (2000).

    Article  CAS  ADS  Google Scholar 

  43. M. Fujiwara et al., Nucl. Fusion 40, 1145 (2000).

    Article  Google Scholar 

  44. B. J. Peterson et al., Nucl. Fusion 41, 519 (2001).

    Article  CAS  ADS  Google Scholar 

  45. B. J. Peterson et al., J. Nucl. Mater. 290–293, 930 (2001).

    Article  Google Scholar 

  46. D. Lawson, Proc. Phys. Soc. B 70, 6 (1957).

    Article  ADS  Google Scholar 

  47. D. M. Meade, Nucl. Fusion 14, 289 (1974).

    CAS  Google Scholar 

  48. R. Behrisch and V. Prozesky, Nucl. Fusion 30, 2166 (1990).

    CAS  Google Scholar 

  49. G. Wolf, D. Reiter, and H. Klever, Nucl. Fusion 30, 2150 (1990).

    Google Scholar 

  50. H. M. Redi and S. A. Cohen, J. Nucl. Mater. 176–177, 2623 (1990).

    Google Scholar 

  51. D. Reiter, H. Klever, G. H. Wolf, et al., Plasma Phys. Control. Fusion 33, 1579 (1991).

    Article  CAS  ADS  Google Scholar 

  52. R. Behrisch, Nucl. Fusion, Suppl., p. 1 (1991).

  53. D. Naujoks, Plasma Material Interaction in Controlled Fusion (Springer, Berlin, Heidelberg New York, 2006).

    Google Scholar 

  54. I. Langmuir, Phys. Rev. 33, 945 (1929).

    Article  ADS  Google Scholar 

  55. R. Chodura, Physics of Plasma-Wall Interactions in Controlled Fusion, NATO ASI Ser. B: Physics, Vol. 113, p. 99 (Plenum, New York, London, 1984).

    Google Scholar 

  56. J. L. Crastron, R. Hancox, A. E. Robson, et al., in Proc. of the 2nd Intern. Conf. on Atom. Energy (1958), p. 3214.

  57. V. A. Simonov, B. N. Shvilkin, and C. P. Katukov, Nucl. Fusion, Suppl., 325 (1962).

  58. Ph. Staib and G. Staudenmaier, J. Nucl. Mater. 63, 37 (1976).

    Article  CAS  ADS  Google Scholar 

  59. Ph. Staib and G. Staudenmaier, J. Nucl. Mater. 76–77, 405 (1978).

    Google Scholar 

  60. G. M. McCracken and D. H. Goodall, Nucl. Fusion 18, 537 (1978).

    CAS  ADS  Google Scholar 

  61. K. Ertl and B. Juettner, Nucl. Fusion 25, 500 (1985).

    Google Scholar 

  62. R. Behrisch, Physics of Plasma-Wall Interactions in Controlled Fusion, NATO ASI Ser. B: Physics, Vol. 113, p. 495 (Plenum, New York, London, 1984).

    Google Scholar 

  63. B. Juttner, Beitr. Plasmaphys. 19, 25 (1979).

    Article  Google Scholar 

  64. M. G. Drouet, Jpn. J. Appl. Phys. 20, 229 (1981).

    Article  Google Scholar 

  65. R. Behrisch, Contrib. Plasma Phys. 42, 431 (2002).

    Article  CAS  ADS  Google Scholar 

  66. C. Garcia-Rosales, R. Behrisch, B. Juttner, et al., in Proc. of the 21st EPS Conf. on Controlled Fusion and Plasma Physics (Montpellier, 1994), p. 718.

  67. R. Behrisch, M. Mayer, and C. Garcia-Rosales, J. Nucl. Mater. 233-237, 673 (1996).

    Article  CAS  ADS  Google Scholar 

  68. H. Esser, V. Philips, P. Wienhold, et al., J. Nucl. Mater. 363–365, 146 (2007).

    Article  Google Scholar 

  69. P. H. Rebut, R. J. Bickerton, and B. E. Klein, Nucl. Fusion 25, 1011 (1985).

    CAS  Google Scholar 

  70. J. Linke et al., Fusion Sci. Technol. 46, 124 (2004).

    Google Scholar 

  71. R. Behrisch and G. Venus, J. Nucl. Mater. 202, 1 (1993).

    Article  CAS  ADS  Google Scholar 

  72. H. W. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1959).

    Google Scholar 

  73. H. F. Göldner, Leitfaden Der Technischen Mechannik (VEB Fachbuchverlag, Leipzig, 1989).

    Google Scholar 

  74. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermal Conductivity of Metallic Elements. Thermal Properties of Matter 1 (Plenum, New York, Washington, 1970).

    Google Scholar 

  75. C. García-Rosales and M. Balden, J. Nucl. Mater. 290–293, 173 (2001).

    Article  Google Scholar 

  76. N. Yoshida, H. Iwakiri, K. Tokunaga, and T. Baba, J. Nucl. Mater. 337–338, 946 (2005).

    Article  Google Scholar 

  77. K. Tunaga, R. P. Doerner, R. Seraydarian, et al., J. Nucl. Mater. 313–316, 92 (2003).

    Article  Google Scholar 

  78. M. Tokitani, M. Miyamoto, K. Tokunaga, et al., J. Nucl. Mater. 363–365, 443 (2007).

    Article  Google Scholar 

  79. R. Behrisch, J. Nucl. Mater. 93–94, 498 (1980).

    Article  Google Scholar 

  80. J. L. Cecchi, S. A. Cohen, H. F. Dylla, and D. E. Post, J. Nucl. Mater. 121, 1 (1984).

    Article  Google Scholar 

  81. V. Kotov, A. Litnovsky, A. S. Kukushkin, et al., J. Nucl. Mater. 390–391, 528 (2009).

    Article  Google Scholar 

  82. R. Behrisch, G. Federici, and A. S. Kukushkin, J. Nucl. Mater. 313–316, 588 (2003).

    Google Scholar 

  83. V. Kotov, D. Reiter, A. S. Kukushkin, and H. D. Pacher, Phys. Scr. 136, 20 (2009).

    Google Scholar 

  84. W. Eckstein, Reflection Max Plank Inst. Report IPP 17/122 (Garching, 2009).

  85. O. V. Ogorodnikova, J. Nucl. Mater. 313–316, 417 (2003).

    Google Scholar 

  86. S. Lindig, M. Balden, V. Kh. Alimov, et al., Physica Scr. 136, 100 (2009).

    Google Scholar 

  87. N. Yoshjda and H. Iwakiri, J. Nucl. Mater. 337–339, 946 (2005).

    Article  Google Scholar 

  88. M. Tokotami, M. Miyamoto, K. Tokunaga, et al., J. Nucl. Mater. 363–365, 443 (2007).

    Article  Google Scholar 

  89. N. W. Pleshivtsev, Cathode Pulverization (Atomisdat, Moscow, 1968) [in Russian].

    Google Scholar 

  90. Sputtering by Particle Bombardment I, Ed. by R. Behrish (Springer, Berlin, 1981).

    Google Scholar 

  91. Sputtering by Particle Bombardment II, Ed. by R. Behrish (Springer, Berlin, 1983).

    Google Scholar 

  92. Sputtering by Particle Bombardment III, Ed. by R. Behrish and K. Wittmaack (Springer, Berlin, 1991).

    Google Scholar 

  93. Sputtering by Particle Bombardment. Experiments and Computer Calculations from Treshold to MeV Energies, Ed. by R. Behrish and W. Ecktein (Springer, Berlin, 2006).

    Google Scholar 

  94. C. Garcia-Rosales, J. Nucl. Mater. 211, 202 (1994).

    Article  CAS  ADS  Google Scholar 

  95. J. Roth, A. Kirschner, W. Bohmeyer, et al., J. Nucl. Mater. 337–339, 970 (2005).

    Article  Google Scholar 

  96. R. Behrisch, V. Kripunov, R. T. Santoro, and J. M. Yesiil, J. Nucl. Mater. 285–263, 686 (1998).

    Article  Google Scholar 

  97. J. Winter, J. Nucl. Mater. 145–157, 131 (1989).

    Google Scholar 

  98. Ch. Linsmeier, J. Luthin, and P. Goldstra Mater. 290–293, 25 (2001).

    Google Scholar 

  99. W. Eckstein, Nucl. Instrum. Methods Phys. Res. B 171, 435 (2000).

    Article  CAS  ADS  Google Scholar 

  100. V. I. Pistunoivich, A. C. Vertkov, Fv. A. Evtikhin, et al., J. Nucl. Mater. 233–237, 650 (1996).

    Article  Google Scholar 

  101. B. J. Kripunov, V. P. Petrov, V. V. Shapkin, et al., J. Nucl. Mater. 313–316, 619 (2003).

    Article  Google Scholar 

  102. S. Mirnov, J. Nucl. Mater. 390–391, 816 (2009).

    Google Scholar 

  103. R. Bastasz and W. Eckstein, J. Nucl. Mater. 290–293, 19 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrisch, R. Plasma-facing materials for fusion devices. J. Surf. Investig. 4, 549–562 (2010). https://doi.org/10.1134/S1027451010040014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451010040014

Keywords

Navigation