Skip to main content
Log in

Ultrasound effect on neutron Bragg diffraction in a perfect and deformed silicon single crystal

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The features of neutron Bragg diffraction in a perfect and bent (deformed) silicon single crystal have been studied under ultrasound excitation. In contrast to a perfect crystal where an increase in the diffraction intensity has been observed with an increase in the ultrasound wave’s amplitude, in a deformed silicon crystal the intensity sharply decreases (two times) already at small voltages on a piezoelectric transducer. The depth and position of minima of the total intensity depend on the ultrasound wave’s amplitude and the bending radius of a crystal. To explain the observed effects the modified Penning-Polder-Kato model has been successfully used, in which the role of ultrasound is reduced to the formation of resonance transitions of imaging points between different sheets of dispersion surface. Experimental proofs of validity of the used model are presented. Estimations of the probabilities of one- and multiphonon scattering processes obtained from experimental data have a good agreement with theoretical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Khler, W. Mhling, and H. Peibst, Phys. Stat. Solidi B 61, 439 (1974).

    Article  Google Scholar 

  2. P. Mikula, P. Lukas, and J. Kulda, Acta Crystallogr. A 48, 72 (1992).

    Article  Google Scholar 

  3. E. M. Iolin, E. Zolotouabko, E. Raitman, and B. Kuvaldin, Zh. Eksp. Teor. Fiz. 91, 2132 (1986) [Sov. Phys. JETP 64, 1267 (1986)].

    Google Scholar 

  4. E. M. Iolin, E. Raitman, V. Kuvaldin, et al., Zh. Eksp. Teor. Fiz. 94, 218 (1988) [Sov. Phys. JETP 67, 771 (1988)].

    CAS  Google Scholar 

  5. F. N. Chukhovskii, V. L. Nosik, and E. M. Iolin, Zh. Eksp. Teor. Fiz. 104, 2452 (1993) [JETP 77, 102 (1993)].

    CAS  Google Scholar 

  6. E. Iolin, B. Farago, E. Raitman, and F. Mezei, Physica B 241–243, 1213 (1998).

    Google Scholar 

  7. J. Felber, R. Gahler, C. Rauch, and R. Golub, Phys. Rev. A 53, 319 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. V. Aksenov, V. Gavrilov, and Yu. Nikitenko, Latv. J. Phys. Tech. Sci. 3, 55 (2004).

    Google Scholar 

  9. K. Assur and I. Entin, Sov. Phys. Solid State 26, 2122 (1982).

    Google Scholar 

  10. D. Roshchupkin, D. Irzhak, R. Tucoulou, and O. Buzanov, J. Appl. Phys. 94, 6692 (2003).

    Article  CAS  ADS  Google Scholar 

  11. E. Iolin, E. Raitman, V. Gavrilov, B. Kuvaldin, and L. Rusevich, J. Phys. D: Appl. Phys. A 281, 28 (1995).

    Google Scholar 

  12. V. Gavrilovs, D. Mjasishchevs, and E. Raitmans, Latv. J. Phys. Tech. Sci. 1, 3 (2005).

    Google Scholar 

  13. E. Zolotoyabko, Nucl. Instrum. Methods Phys. Res. B 131, 410 (1999).

    Article  ADS  Google Scholar 

  14. A. E. Blagov, M. V. Koval’chuk, V. G. Kon, and Yu. V. Pisarevskii, Kristallografiya 51(5), 1 (2006) [Crystallogr. Rep. 51, 729 (2006)].

    Google Scholar 

  15. E. Iolin, E. Raitman, V. Gavrilov, et al., ISSI Proc. (OIYaI, Dubna, 1993), p. 278.

    Google Scholar 

  16. E. Zolotoyabko, PhD Thesis (Riga, 1990).

  17. A. A. Blistanov, V. S. Bondarenko, N. V. Perelomova, F. N. Strizhevskaya, V. V. Chkalova, and M. N. Shaskol’skaya, Acoustic Crystals (Nauka, Moscow, 1982), p. 45 [in Russian].

    Google Scholar 

  18. P. Penning, Philips Res. Rep. Suppl. 5, 1 (1966).

    Google Scholar 

  19. N. Kato, J. Phys. Soc. Jpn. 19, 67 (1964).

    Article  CAS  ADS  Google Scholar 

  20. E. Iolin, L. Rusevich, M. Strobl, et al., Nucl. Instrum. Methods Phys. Res. A 259, 152 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E. Raitman, V. Gavrilov, D. Mjasischev, M. Brezgunov, 2009, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, No. 12, pp. 3–8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raitman, E., Gavrilov, V., Mjasischev, D. et al. Ultrasound effect on neutron Bragg diffraction in a perfect and deformed silicon single crystal. J. Surf. Investig. 3, 902–907 (2009). https://doi.org/10.1134/S1027451009060093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451009060093

Keywords

Navigation