Skip to main content
Log in

Numerical simulation of the optical reflection and transmission coefficients of a periodic surface of metallic nanowire grating

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The optical reflection and transmission coefficients of a metallic nanograting have been studied with the use of numerical simulation in a wide range of the size of structural units of the grating. The grating is composed of silver nanowires arranged periodically on a quartz substrate. The cases of s- and p-polarized incident waves have been considered. In particular, it has been found that the spectral dependence of the reflection and transmission coefficients of the nanograting becomes oscillatory and exhibits several deep minima when all structural parameters of the grating (the nanowire’s width and height, and the grating period) approach tens of nanometers. The physical reason of the appearance of these oscillations has been analyzed. It has been shown how the depth and position of the discovered minima depend on the light angle of the incident wave and the rotation angle of the grating around its normal surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ebbesen, H. Lezec, H. Ghaemi, et al., Nature (London) 391, 667 (1998).

    Article  CAS  ADS  Google Scholar 

  2. B. Lamprecht, G. Schider, R. T. Lechner, et al., Phys. Rev. Lett. 84, 4721 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. G. Schider, J. R. Krenn, W. Gotschy, et al., J. Appl. Phys. 90, 3825 (2001).

    Article  CAS  ADS  Google Scholar 

  4. S. Linden, J. Kuhl, and H. Giessen, Phys. Rev. Lett. 86, 4688 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. S. I. Bozhevolnyi, J. Erland, K. Leosson, et al., Phys. Rev. Lett. 86, 3008 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. F. I. Baida and D. Van Labeke, Phys. Rev. B 67, 155314 (2003).

    Article  ADS  Google Scholar 

  7. A. Christ, S. G. Tikhodeev, N. A. Gippius, et al., Phys. Rev. Lett. 91, 183901 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. W. A. Murray, S. Astilean, and W. L. Barnes, Phys. Rev. B 69, 165407 (2004).

    Article  ADS  Google Scholar 

  9. M. A. Garcia, J. de la Venta, P. Crespo, et al., Phys. Rev. B 72, 241403 (2005).

    Article  ADS  Google Scholar 

  10. N. A. Gippius, S. G. Tikhodeev, A. Christ, et al., Fiz. Tverd. Tela 47, 139 (2005) [Phys. Solid State 47, 145 (2005)].

    Google Scholar 

  11. G. Schider, G. Krenn, A. Hohenau, et al., Phys. Rev. B 68, 155427 (2003).

    Article  ADS  Google Scholar 

  12. J. K. Yang, I. K. Hwang, M. K. Seo, et al., Opt. Express 16, 1951 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. R. W. Wood, Philos. Mag. 4, 396 (1902).

    Google Scholar 

  14. U. Fano, J. Opt. Soc. Am. 31, 213 (1941).

    Article  ADS  Google Scholar 

  15. E. M. Kim, S. S. Elovikov, T. V. Murzina, et al., Phys. Rev. Lett. 95, 227402 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

    Google Scholar 

  17. T. Liu, S. Tai, C. Yu, et al., Appl. Phys. Lett. 89, 043122 (2006).

    Article  ADS  Google Scholar 

  18. M. Ohtsu, K. Kobayashi, T. Kawazoe, et al., IEEE J. Sel. Top. Quant. Electron. 8, 839 (2002).

    Article  CAS  Google Scholar 

  19. A. V. Andreev, M. M. Nazarov, I. R. Prudnikov, et al., Phys. Rev. B 69, 035403 (2004).

    Article  ADS  Google Scholar 

  20. A. V. Andreev, A. A. Korneev, L. S. Mukina, et al., Phys. Rev. B 74, 235421 (2006).

    Article  ADS  Google Scholar 

  21. A. V. Andreev, A. A. Korneev, and L. S. Mukina, Kvant. Elektron. 35(1), 27 (2005) [Quantum Electron. 35, 27 (2005)].

    Article  CAS  Google Scholar 

  22. J. Le. Perchec, P. Quemerais, A. Barbara, and T. López-Riós, Phys. Rev. Lett. 100, 066408 (2008).

    Article  PubMed  ADS  Google Scholar 

  23. L. C. Botten, M. S. Craig, and R. C. McPhedran, Optica Acta 28, 1087 (1981).

    MathSciNet  Google Scholar 

  24. M. M. J. Treacy, Phys. Rev. B 66, 195105 (2002).

    Article  ADS  Google Scholar 

  25. M. Kreiter, S. Mittler, W. Knoll, and J. R. Sambles, Phys. Rev. B 65, 125415 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Andreev, A.A. Konovko, I.R. Prudnikov, 2009, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, No. 11, pp. 14–22.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, A.V., Konovko, A.A. & Prudnikov, I.R. Numerical simulation of the optical reflection and transmission coefficients of a periodic surface of metallic nanowire grating. J. Surf. Investig. 3, 857–864 (2009). https://doi.org/10.1134/S1027451009060020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451009060020

Keywords

Navigation