Influence of argon ion bombardment on the formation of intermetallic compounds in the nickel-aluminum system

  • V. I. Bachurin
  • S. A. Krivelevich
Proceedings of the XXXVIII International Conference on Physics of Interaction of Charged Particles with Crystals (Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia, 2008)


The formation of Ni x Al y intermetallic compounds in two-layer (Ni/Al) structures (nickel films deposited on aluminum substrates in vacuum) under bombardment by Ar+ ions has been studied experimentally. The method based on Rutherford backscattering of He+ ions is used to demonstrate that argon ion bombardment causes the formation of intermetallic compounds in the near-surface layer. The thickness of the intermetallic layer formed in the near-surface region substantially exceeds the projective ion path. The composition and thickness of the intermetallic layer depend mainly on the implantation dose and the substrate temperature, rather than on the ion current density. In the intermetallic layer, the content of nickel increases with increasing temperature. It has been established that, in the absence of bombardment, intermetallic phases are not observed at temperatures lower than T = 400°C and that, in the presence of bombardment, the Ni3Al intermetallic layer arises at a temperature of 320°C.


Intermetallic Compound Neutron Technique Ionic Bombardment Intermetallic Layer Implantation Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. A. Bykovskii, V. N. Nevolin, and V. Yu. Fominskii, Ionic and Laser Implantating of Metallic Materials (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  2. 2.
    R. C. De Sila, R. C. Sousa, O. Conde, et al., Surf. Coat. Technol. 83, 60 (1996).CrossRefGoogle Scholar
  3. 3.
    T. Zhang, Y. Wu, Y. Zhang, and W. Qian, Vacuum 65, 127 (2002).CrossRefGoogle Scholar
  4. 4.
    J. Eridon, L. Rehn, and G. Was, Nucl. Instrum. Methods Phys. Res. B 19–20, 626 (1987).CrossRefGoogle Scholar
  5. 5.
    H. K. Kim, S. O. Kim, J. H. Song, et al., Nucl. Instrum. Methods Phys. Res. 59–60, 554 (1991).Google Scholar
  6. 6.
    Y. T. Cheng, S. J. Simco, M. C. Militello, et al., Nucl. Instrum. Methods Phys. Res. 64, 38 (1992).CrossRefADSGoogle Scholar
  7. 7.
    J. S. Colligon, G. Farrel, V. I. Bachurin, and V. E. Yurasova, Radiat. Eff. 138, 195 (1996).CrossRefGoogle Scholar
  8. 8.
    D. Marton, J. Fine, and G. P. Chambers, Phys. Rev. Lett. 61, 2697 (1988).PubMedCrossRefADSGoogle Scholar
  9. 9.
    State Diagrams of Aluminium and Magnesium Systems (Nauka, Moscow, 1977), p. 271 [in Russian].Google Scholar
  10. 10.
    D. I. Tetelbaum, E. V. Kurilchik, and N. D. Latisheva, Nucl. Instrum. Methods Phys. Res. B 127–128, 153 (1997).CrossRefGoogle Scholar
  11. 11.
    W. Huang and I. A. Chang, Intermetallics 6, 487 (1998).CrossRefGoogle Scholar
  12. 12.
    B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in Solids (Metallurgiya, Moscow, 1974) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. I. Bachurin
    • 1
  • S. A. Krivelevich
    • 2
  1. 1.Yaroslavl State Technical UniversityYaroslavlRussia
  2. 2.Yaroslavl Branch of the Institute of Physics and TechnologyRussian Academy of SciencesYaroslavlRussia

Personalised recommendations