Skip to main content
Log in

Application of the thermal spike model for explanation of variations of surface structure of highly oriented pyrolytic graphite under bombardment by 86Kr and 209Bi fast ions with high ionization energy loss

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Temperature effects in the highly oriented pyrolytic graphite (HOPG) under bombardment by 86Kr (253 MeV) and 209Bi (710 MeV) heavy ions are studied in the framework of a three-dimensional thermal spike model. It is shown that the surface temperature of an HOPG target under bombardment by bismuth ions can exceed the sublimation temperature at particular values of the electron-phonon interaction coefficient. At the same time, the temperature at the target surface during bombardment of HOPG by krypton ions does not exceed the sublimation temperature over a wide range of variations in the electron-phonon interaction belongs. The calculations allow the explanation of the observed changes in the surface structure of HOPG single crystal under bombardment by 209Bi and 86Kr ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zh. I. Alferov, Usp. Fiz. Nauk 172(9), 1069 (2002).

    Google Scholar 

  2. N. N. Ledentsov, V. M. Ustinov, Zh. I. Alferov, et al., Fiz. Tekh. Poluprovodn. 32, 385 (1998) [Semiconductors 32, 343 (1998)].

    CAS  Google Scholar 

  3. V. M. Mikhushkin, S. E. Sysoev, and Yu. S. Gordeev, Izv. Akad. Nauk, Ser. Fiz. 66(4), 588 (2002).

    Google Scholar 

  4. S. Bouneau, A. Brunelle, S. Della-Negra, et al., Phys. Rev. B 65(14), 144 106 (2007).

  5. D. Fink and L. Chadderton, Radiat. Eff. Defects Solids 160, 67 (2005).

    Article  CAS  Google Scholar 

  6. Yu. V. Martynenko, in Summary of Science and Technology. Beams of Charged Particles (VINITI, Moscow, 1993), p. 82 [in Russian].

    Google Scholar 

  7. F. F. Komarov, Usp. Fiz. Nauk 173(12), 1287 (2003) [Phys.-Usp. 46, 1253 (2003)].

    Article  Google Scholar 

  8. G. A. Bleikher, V. P. Krivobokov, and O. V. Pashchenko, Thermal Mass Transfer in Solid under the Action of Power Beams of Charged Particles (Nauka, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  9. F. Seitz and J. S. Koehler, Solid State Phys. 2, 251 (1956).

    Google Scholar 

  10. I. M. Lifshits, Dokl. Akad. Nauk SSSR 109(6), 1109 (1956).

    Google Scholar 

  11. I. M. Lifshits, M. I. Kaganov, and L. V. Tanatarov, At. Energ. 6, 391 (1959).

    Google Scholar 

  12. M. I. Kaganov, I. M. Lifshits, and L. V. Tanatarov, Zh. Eksp. Teor. Fiz. 31(2), 232 (1956) [Sov. Phys. JETP 4, 173 (1956)].

    CAS  Google Scholar 

  13. Ya. E. Geguzin, M. I. Kaganov, and I. M. Lifshits, Fiz. Tverd. Tela 15(8), 2425 (1973) [Sov. Phys. Solid State 15, 1612 (1973)].

    Google Scholar 

  14. A. A. Davydov and A. I. Kalinichenko, VANT, Ser. Fiz. Radiats. Povrezhdenii Radiatz. Materialoved. 3(36), 27 (1985).

    Google Scholar 

  15. R. L. Fleisher, P. B. Price, and R. M. Walker, J. Appl. Phys. 36(11), 3645 (1965).

    Article  Google Scholar 

  16. R. L. Fleisher, P. B. Price, and R. M. Walker, Nuclear Track in Solids (Univ. of California, Los Angeles, 1975), p. 273.

    Google Scholar 

  17. I. A. Baranov, Yu. V. Martynenko, S. O. Tsepelevich, and Yu. N. Yavlinskii, Usp. Fiz. Nauk 156(3), 477 (1988) [Sov. Phys.-Usp. 31, 1015 (1988)].

    CAS  Google Scholar 

  18. A. S. Fialkov, Carbon and Carbon-Based Interlayer Compounds and Composites (Aspekt Press, Moscow, 1997) [in Russian].

    Google Scholar 

  19. Z. G. Wang, Ch. Dufour, E. Paumier, et al., J. Phys.: Condens. Matter 6(34), 6733 (1994).

    Article  CAS  Google Scholar 

  20. M. Toulemonde, Nucl. Instrum. Methods Phys. Res., Sect. B 156(1–4), 1 (1999).

    Article  CAS  Google Scholar 

  21. R. Neumann, Nucl. Instrum. Methods Phys. Res., Sect. B 151(1–4), 42 (1999).

    Article  CAS  Google Scholar 

  22. S. Furuno, H. Otsu, K. Hojou, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 107(1–4), 223 (1996).

    Article  CAS  Google Scholar 

  23. Ch. Dufour, A. Audouard, F. Beuneu, et al., J. Phys.: Condens. Matter 5(26), 4573 (1993).

    Article  CAS  Google Scholar 

  24. A. Audouard, E. Balanzat, J. C. Jousset, et al., J. Phys: Condens. Matter 5(5), 995 (1993).

    Article  CAS  Google Scholar 

  25. Ch. Dufour, E. Paumier, and M. Toulemonde, Radiat. Eff. Defects Solids 126, 119 (1993).

    Article  CAS  Google Scholar 

  26. S. A. Karamian, Yu. Ts. Oganessian, and V. N. Bugrov, Nucl. Instrum. Methods Phys. Res., Sect. B 43(2), 153 (1989).

    Article  Google Scholar 

  27. A. Yu. Didyk, Metally 3, 128 (1995).

    Google Scholar 

  28. I. V. Amirkhanov, A. Yu. Didyk, E. V. Zemlyanaya, et al., Pis’ma Fiz. Elem. Chastits At. Yadra 3(1), 63 (2006) [Phys. Part. Nucl. 3, 37 (2006)].

    Google Scholar 

  29. I. V. Amirkhanov, A. Yu. Didyk, N. R. Sarkar, et al., Pis’ma Fiz. Elem. Chastits At. Yadra 3(5), 80 (2006) [Phys. Part. Nucl. 3, 320 (2006)].

    Google Scholar 

  30. I. V. Amirhanov, A. Yu. Didyk, D. Z. Muzafarov, et al., Crystallogr. Rep. 51(Suppl. 1), 32 (2006).

    Article  CAS  Google Scholar 

  31. I. V. Amirkhanov, A. Yu. Didyk, A. Khofman, et al., Fiz. Elem. Chastits At. Yadra 37(6), 1592 (2006) [Phys. Part. Nucl. 37, 837 (2006)].

    Google Scholar 

  32. I. V. Amirhanov, A. Yu. Didyk, D. Z. Muzafarov, et al., Crystallogr. Rep. 51(Suppl. 1), 32 (2006).

    Article  CAS  Google Scholar 

  33. M. R. P. Waligorski, R. N. Hamm, and R. Katz, Nucl. Tracks Radiat. Meas. 11, 306 (1986).

    Article  Google Scholar 

  34. I. S. Bitensky, P. Dimirev, and B. U. Sundqust, Nucl. Instrum. Methods Phys. Res., Sect. B 82, 356 (1998).

    Article  Google Scholar 

  35. A. Yu. Didyk, S. V. Latyshev, V. K. Semina, et al., Pis’ma Zh. Tekh. Fiz. 26(17), 1 (2000) [Tech. Phys. Lett. 26, 751 (2000)].

    Google Scholar 

  36. Yu. N. Cheblukov, A. Yu. Didyk, A. S. Fedotov, et al., J. Adv. Mater. 5, 42 (2001).

    Google Scholar 

  37. L. A. Vlasukova, A. Yu. Didyk, F. F. Komarov, et al., Poverkhnost 8, 34 (2006).

    Google Scholar 

  38. L. A. Vlasukova, A. Yu. Didyk, F. F. Komarov, et al., Poverkhnost 1, 50 (2006).

    Google Scholar 

  39. Physical Quantities: A Handbook, Ed. by I. S. Grigorjev and E. Z. Meilikhova (Energoatomizdat, Moscow, 1991), p. 1232 [in Russian].

    Google Scholar 

  40. A. A. Samarskii, in Theory of Differential Schemes (Nauka, Moscow, 1983), p. 258 [in Russian].

    Google Scholar 

  41. A. A. Samarskii and A. V. Gulin, in Stability of Differential Schemes (Nauka, Moscow, 1973), p. 308 [in Russian].

    Google Scholar 

  42. L. I. Turchak, in Principles of Numerical Methods (Nauka, Moscow, 1987), p. 277 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.V. Amirkhanov, A.Yu. Didyk, D.Z. Muzafarov, I.V. Puzynin, T.P. Puzynina, N.R. Sarkar, I. Sarkhadov, Z.A. Sharipov, 2008, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, No. 5, pp. 3–12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amirkhanov, I.V., Didyk, A.Y., Muzafarov, D.Z. et al. Application of the thermal spike model for explanation of variations of surface structure of highly oriented pyrolytic graphite under bombardment by 86Kr and 209Bi fast ions with high ionization energy loss. J. Surf. Investig. 2, 331–339 (2008). https://doi.org/10.1134/S1027451008030014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451008030014

Keywords

Navigation