Skip to main content

Structural and phase analysis of rapidly solidified Al-Fe alloys

Abstract

The structure and phase composition of lightly-doped Al-Fe alloys obtained by ultrarapid quenching from the melt are investigated. The surface of foils was studied using scanning electron microscopy, atomic-force microscopy, and Rutherford backscattering technique. The variation in the phase composition of alloys during annealing was studied by x-ray diffraction technique and by resistivity and microhardness measurements. The Al-Fe alloys have microcrystalline structure with a nonuniform iron content in the near-surface region of the samples. A correlation of depth profiles of iron and phase composition of the foils is observed. It is found that decomposition of the supersaturated α solid solution proceeds in the temperature range 250–350°C. As the annealing temperature increases, a metastable Al6Fe phase is precipitated. In the range 300–500°C, the metastable Al6Fe phase decomposes, and a stable Al3Fe phase is precipitated.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. Katgerman and F. Dom, Mater. Sci. Eng., A 375–377, 1212 (2004).

    Google Scholar 

  2. 2.

    E. J. Lavernia, J. D. Ayers, and T. S. Srivatson, Int. Mater. Rev. 37(1), 1 (1992).

    CAS  Google Scholar 

  3. 3.

    R. F. Cochrane, P. V. Evans, and A. L. Greer, Mater. Sci. Eng., A 133, 803 (1991).

    Article  Google Scholar 

  4. 4.

    D. H. Kim and B. Cantor, J. Mater. Sci. 29, 2884 (1994).

    Article  Google Scholar 

  5. 5.

    T. I. Anishchenko, B. N. Litvin, and L. M. Burov, Structure and Properties of Al-Fe Alloys Produced under Nonequilibrium Conditions (Dnepropetrovsk University, Dnepropetrovsk, 1990) [in Russian].

    Google Scholar 

  6. 6.

    I. G. Brodova, V. O. Esin, I. V. Polents, et al., Rasplavy, No. 1, 16 (1990).

  7. 7.

    M. Bizjak and L. Kosec, Z. Metallkd. 91(2), 160 (2000).

    CAS  Google Scholar 

  8. 8.

    I. I. Tashlykova-Bushkevich and V. G. Shepelevich, Fiz. Khim. Obrab. Mater., No. 6, 73 (1999).

  9. 9.

    I. I. Tashlykova-Bushkevich, Vacuum 78(2–4), 529 (2005).

    Article  CAS  Google Scholar 

  10. 10.

    F. F. Komarov, M. A. Kumakhov, and I. S. Tashlykov, Non-Destructive Ion Beam Analysis of Surfaces (Universitetskoe, Minsk, 1987; Gordon and Breach, New York, 1990).

    Google Scholar 

  11. 11.

    L. N. Doolittle, Nucl. Instrum. Methods Phys. Res., Sect. B 9, 344 (1985).

    Article  Google Scholar 

  12. 12.

    M. Bizjak, L. Kosec, B. Kosec, and I. Anzel, Metalurgija (Zagreb, Croatia) 45(4), 281 (2006).

    CAS  Google Scholar 

  13. 13.

    I. I. Tashlykova-Bushkevich, V. G. Shepelevich, and E. Yu. Neumerzhitskaya, Poverkhnost, No. 4, 69 (2007).

  14. 14.

    S. I. Miroshnichenko, Quenching from the Liquid State (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  15. 15.

    I. I. Tashlykova-Bushkevich, Method of Rutherford Backscattering for Analysis of Compositions of Solids (Belarussian State University of Informatics and Radioelectronics, Minsk, 2003) [in Russian].

    Google Scholar 

  16. 16.

    G. L. Squires, Practical Physics (Wiley, London, 1968; Mir, Moscow, 1971).

    Google Scholar 

  17. 17.

    A. A. Rusakov, X-ray Diffraction of Metals (Atomizdat, Moscow, 1977) [in Russian].

    Google Scholar 

  18. 18.

    Aluminum: Properties and Physical Metallurgy (Reference Book), Ed. by J. E. Hatch (The American Society for Metals, Metals Park, Ohio (United States), 1984; Metallurgiya, Moscow, 1989).

    Google Scholar 

  19. 19.

    M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, New York, 1958; Metallurgizdat, Moscow, 1962), Vol. 2.

    Google Scholar 

  20. 20.

    E. Yu. Vasilevich, E. S. Gut’ko, and V. G. Shepelevich, Theoretical and Technological Foundations of Hardening and Restoration of Products of Mechanical Engineering: Collected of Papers (Polotsk State University, Polotsk, 2001), p. 162 [in Russian].

    Google Scholar 

  21. 21.

    V. G. Shepelevich, I. I. Tashlykova-Bushkevich, and A. G. Anisovich, Fiz. Khim. Obrab. Mater., No. 4, 86 (1999).

  22. 22.

    I. I. Tashlykova-Bushkevich, E. S. Gut’ko, and V. G. Shepelevich, Perspekt. Mater., No. 1, 59 (2005).

  23. 23.

    I. I. Tashlykova-Bushkevich, E. S. Gut’ko, and V. G. Shepelevich, Adv. Mater. 12(1), 54 (2005).

    CAS  Google Scholar 

  24. 24.

    M. A. Taha, N. A. El-Mahallawy, and M. F. Abedel-Ghaffar, J. Mater. Sci. 27, 5823 (1992).

    Article  CAS  Google Scholar 

  25. 25.

    A. P. Gulyaev, Physical Metallurgy (Metallurgiya, Moscow, 1986; Mir, Moscow, 1980).

    Google Scholar 

  26. 26.

    I. I. Tashlykova-Bushkevich and V. G. Shepelevich, J. Alloys Compd. 29, 205 (2000).

    Article  Google Scholar 

  27. 27.

    I. I. Tashlykova-Bushkevich and V. G. Shepelevich, Fiz. Khim. Obrab. Mater., No. 4, 99 (2000).

  28. 28.

    I. I. Tashlykova-Bushkevich, in Proceedings of the 3rd All-Russian Scientific and Technical Conference on Rapidly-Quenched Materials and Coatings, Ed. by A. P. Petrov, V. A. Vasil’ev, and A. A. Lozovan (Moscow State Aviation Technological University (MATI)-Russian State Technological University (RGTU), Moscow, 2004), p. 23.

    Google Scholar 

  29. 29.

    I. I. Tashlykova-Bushkevich, V. S. Kulikauskas, V. Vesh, et al., Fiz. Khim. Obrab. Mater., No. 3, 75 (2004).

  30. 30.

    I. I. Tashlykova-Bushkevich, E. S. Gut’ko, and V. G. Shepelevich, Poverkhnost, No. 4, 100 (2006).

  31. 31.

    T. S. Srivatson, T. S. Sudarshan, and E. J. Lavernia, Prog. Mater. Sci. 39, 317 (1995).

    Article  Google Scholar 

  32. 32.

    F. Pleiter and C. Hohenemser, Phys. Rev. B: Condens. Matter 25(1), 106 (1982).

    CAS  Google Scholar 

  33. 33.

    M. de Haas and J. Th. M. de Hosson, Scr. Mater. 44, 281 (2001).

    Article  Google Scholar 

  34. 34.

    A. Brokman, Acta Metall. 35(2), 307 (1987).

    Article  CAS  Google Scholar 

  35. 35.

    A. R. Knudson, Nucl. Instrum. Methods 168, 163 (1980).

    Article  CAS  Google Scholar 

  36. 36.

    A. A. Klyuchnikov, N. N. Pucherov, T. D. Chesnokova, and V. N. Shcherbin, Methods of Charged-Particle Beam Analysis (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  37. 37.

    V. Shepelevich and I. Tashlykova-Bushkevich, Mater. Sci. Forum 248–249, 385 (1997).

    Article  Google Scholar 

  38. 38.

    V. I. Fadeeva, A. V. Leonov, G. K. Ryasnyi, and S. I. Reiman, Metally, No. 2, 87 (1993).

  39. 39.

    A. Il’inskii, S. Slyusarenko, O. Slukhovskii, et al., Mater. Sci. Eng., A 325(1–2), 98 (2002).

    Google Scholar 

  40. 40.

    A. G. Khachaturyan, Theory of Structural Transformations in Solids (Nauka, Moscow, 1974; Wiley, New York, 1983).

    Google Scholar 

  41. 41.

    A. Guinier, Heterogeneities in Solid Solutions (Academic, New York, 1959; Inostrannaya Literatura, Moscow, 1962).

    Google Scholar 

  42. 42.

    R. I. Kuznetsova, S. Z. Fedorenko, G. M. Tsoi, and N. N. Zhukov, Fiz. Met. Metalloved. 42(1), 75 (1976).

    CAS  Google Scholar 

  43. 43.

    V. I. Fadeeva, A. A. Leonov, G. K. Ryasnyi, and A. A. Sorokin, Neorg. Mater. 26(8), 1662 (1990).

    CAS  Google Scholar 

  44. 44.

    H. El. Sayed and I. KovĂcs, Phys. Status Solidi A 24(1), 123 (1974).

    Article  Google Scholar 

  45. 45.

    I. KovĂcs, Cryst. Res. Technol. 19(10), 1331 (1984).

    Article  Google Scholar 

  46. 46.

    A. Gaber, N. Afify, and M. S. Mostafa, J. Phys. D: Appl. Phys. 23, 1119 (1990).

    Article  CAS  Google Scholar 

  47. 47.

    D. H. Kim and B. Cantor, Philos. Mag. A 69(1), 45 (1994).

    Article  CAS  Google Scholar 

  48. 48.

    I. I. Tashlykova-Bushkevich and M. Kolasik, in Proceedings of the IV International Conference on New Electrical and Electronic Technologies and Their Industrial Implementation (NEET’2005), Ed. by P. Wegierek and T. Kołtunowicz (Lublin University of Technology, Zakopane, Poland, 2005), p. 175.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. I. Tashlykova-Bushkevich.

Additional information

Original Russian Text © I.I. Tashlykova-Bushkevich, E.S. Gut’ko, V.G. Shepelevich, S.M. Baraishuk, 2008, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, No. 4, pp. 69–75.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tashlykova-Bushkevich, I.I., Gut’ko, E.S., Shepelevich, V.G. et al. Structural and phase analysis of rapidly solidified Al-Fe alloys. J. Synch. Investig. 2, 310 (2008). https://doi.org/10.1134/S1027451008020286

Download citation

Keywords

  • Unit Cell Parameter
  • Surface Investigation
  • Iron Atom
  • Neutron Technique
  • Interplanar Spacing