Skip to main content
Log in

A New Source of Sulfates in the Atmosphere

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Monitoring data on sulfates in atmospheric haze particles over Beijing in winter 2016 are considered. It is found that the source of sulfates in humidified haze particles is the catalytic oxidation of sulfur dioxide by molecular oxygen involving ions of transition metals \({\text{(S}}{{{\text{O}}}_{{{\text{2}}{\kern 1pt} {\text{(gas)}}}}}\xrightarrow{{{{{\text{Mn}}} \mathord{\left/ {\vphantom {{{\text{Mn}}} {{\text{Fe}}}}} \right. \kern-0em} {{\text{Fe}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}}}{\text{SO}}_{{4({\text{aq}})}}^{{2 - }})\) proceeding in a branched mode. Concentration conditions of this process and the features of its dynamics in the atmosphere are discussed. The agreement between the calculated content of \({\text{SO}}_{{4({\text{aq}})}}^{{2 - }}\) in particles and monitoring data indicates that a branched mode of catalytic conversion of SO2 (gas) in the atmosphere exists and represents a new source of sulfates. This fast nonphotochemical channel should be taken into account in inventory system of sulfate sources in the global atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. M. O. Andreae, C. D. Jones, and P. M. Cox, “Strong present-day cooling implies a hot future,” Nature 435 (7046), 1187–1190 (2005).

    Article  ADS  Google Scholar 

  2. M. Kulmala, U. Pirjola, and U. Makela, “Stable sulphate clusters as a source of new atmospheric particles,” Nature 404 (6773), 66–69 (2000).

    Article  ADS  Google Scholar 

  3. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics, from Air Pollution to Climate Change (John Wiley & Sons, Hoboken, New Jersey, USA, 2016).

    Google Scholar 

  4. J. Firket, “Fog along the Meuse Valley,” Trans. Faraday Soc. 32, 1192–1196 (1936).

    Article  Google Scholar 

  5. M. L. Bell and D. L. Davis, “Reassessment of the lethal London fog of 1952: Novel indicators of acute and chronic consequences of acute exposure to air pollution,” Environ. Health Perspect. 109 (3), 389–394 (2001).

    Google Scholar 

  6. R. J. Ball and G. D. Robinson, “The origin of haze in the central United States and its effect on solar radiation,” J. Appl. Meteorol. 21 (2), 171–188 (1982).

    Article  ADS  Google Scholar 

  7. H. Kim, Q. Zhang, and Y. Sun, “Measurement report: Characterization of severe spring haze episodes and influences of long-range transport in the Seoul metropolitan area in March 2019,” Atmos. Chem. Phys. 20 (19), 11527–11550 (2020).

    Article  ADS  Google Scholar 

  8. A. Sirois and L. A. Barrie, “Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995,” J. Geophys. Res. 104 (D9), 11 599–11 618 (1999).

    Article  ADS  Google Scholar 

  9. L. A. Barrie and R. M. Hoff, “The oxidation rate and residence time of sulphur dioxide in the Arctic atmosphere,” Atmos. Environ. 18 (12), 2711–2722 (1984).

    Article  ADS  Google Scholar 

  10. G. H. Wang, R. Y. Zhang, M. E. Gomes, Y. Song, L. Zhou, J. Cao, J. Hu, G. Tang, Zh. Chen, Z. Li, Z. Hu, C. Peng, C. Lian, Y. Chen, Y. Pan, Y. Zhang, Y. Sun, W. Li, T. Zhu, H. Tian, and M. Ge, “Persistent sulfate formation from London fog to Chinese haze,” Proc. Natl. Acad. Sci. U.S.A. 113 (48), 13  630–13 635 (2016).

    Article  Google Scholar 

  11. T. Liu, S. L. Clegg, and J. P. D. Abbatt, “Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles,” Proc. Natl. Acad. Sci. U.S.A. 117 (3), 1354–1359 (2020).

    Article  ADS  Google Scholar 

  12. H. Zhang, Y. Xu, and L. Jia, “A chamber study of catalytic oxidation of SO2 by Mn2+/Fe3+ in aerosol water,” Atmos. Environ. 245, 118019 (2021).

    Article  Google Scholar 

  13. P. Warneck, P. Mirabel, G. A. Salmon, R. van Eldik, C. Winckier, K. J. Wannowious, and C. Zetzsch, “Review of the activities and achievements of the EURO-TRAC subproject HALIPP,” in Heterogeneous and Liquid Phase Processes (Springer, Berlin, Heidelberg, 1996).

    Book  Google Scholar 

  14. P. Liu C. Ye, Ch. Xue, Ch. Zhang, Yu. Mu, and X. Sun, “Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: Gas-phase, heterogeneous and aqueous-phase chemistry,” Atmos. Chem. Phys. 20 (7), 4153–4165 (2020).

    Article  ADS  Google Scholar 

  15. G. J. Zheng, F. K. Duan, H. Su, J. L. Ma, Y. Zheng, B. Zheng, Q. Czhang, T. Huang, T. Kimoto, D. Chang, U. Poschl, Y. F. Cheng, and K. B. He, “Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions,” Atmos. Chem. Phys. 15 (6), 2969–2983 (2015).

    Article  ADS  Google Scholar 

  16. J. Berglund, S. Fronaeus, and L. I. Elding, “Kinetics and mechanism for manganese-catalyzed oxidation of sulfur(IV) by oxygen in aqueous solution,” Inorg. Chem. 32 (21), 4527–4537 (1993).

    Article  Google Scholar 

  17. D. R. Coughanowr and F. E. Krause, “The reaction of SO2 and O2 in aqueous solutions of MnSO4,” Ind. Eng. Chem. Fund. 4 (1), 61–66 (1965).

  18. I. Grgic, V. Hudnik, M. Bizjak, and J. Levec, “Aqueous S(IV) oxidation—I. Catalytic effects of some metal ions,” Atmos. Environ. 25A (8), 1591–1597 (1991).

    Article  ADS  Google Scholar 

  19. T. Ibusuki and K. Takeuchi, “Sulfur dioxide oxidation by oxygen catalyzed by mixtures of manganese(II) and iron(III) in aqueous solutions at environmental reaction conditions,” Atmos. Environ. 21 (7), 1555–1560 (1987).

    Article  ADS  Google Scholar 

  20. J. Feichter, E. Kjellstrom, H. Rodhe, F. Dentener, J. Lelieveld, and G.-J. Roelofs, “Simulation of the tropospheric sulfur cycle in a global climate model,” Atmos. Environ. 30 (10–11), 1693–1707 (1996).

    Article  ADS  Google Scholar 

  21. B. Alexander, R. J. Park, D. J. Jacob, and S. Gong, “Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget,” J. Geophys. Res.: Atmos. 114, D02309 (2009).

    Article  ADS  Google Scholar 

  22. E. Harris, B. Sinha, D. van Pinxteren, A. Tilgner, FombaK. Wadinga, J. Schneider, A. Roth, T. Gnauk, B. Fahlbusch, S. Mertes, T. Lee, J. Collett, S. Foley, S. Borrmann, P. Hoppe, and H. Herrmann, “Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2,” Science 340 (6133), 727–730 (2013).

    Article  ADS  Google Scholar 

  23. A. N. Ermakov and A. P. Purmal, “Catalysis of oxidation by manganese ions,” Kinetic. Catal. 43 (2), 249–260 (2002).

    Article  Google Scholar 

  24. A. N. Yermakov, “On the influence of ionic strength on the kinetics of sulfite oxidation in the presence of Mn(II),” Kinetic. Catal. 63 (2), 157–165 (2022).

    Article  Google Scholar 

  25. A. N. Yermakov, A. E. Aloyan, and V. O. Arutyunyan, “Dynamics of sulfate formation in atmospheric haze,” Atmos. Ocean. Opt. 36 (4), 394–399 (2023).

    Article  Google Scholar 

  26. A. N. Yermakov, “On a new mode of catalytic sulfite oxidation in the presence of Mn(II) and excess metal ions,” Kinetic. Catal. 64 (1), 74–84 (2023).

    Article  Google Scholar 

  27. J. R. Mc-Cabe, J. Savarino, B. Alexander, S. Gong, and M. H. Thiemens, “Isotopic constraints on non-photochemical sulfate production in the Arctic winter,” Geophys. Rev. Lett. 33 (5), L05810 (2006).

  28. P. Behra and L. Sigg, “Evidence for redox cycling of iron in atmospheric water droplets,” Nature 344 (6265), 419–421 (1990).

    Article  ADS  Google Scholar 

  29. P. Laj, S. Fuzzi, M. C. Facchini, J. A. Lind, G. Orsi, M. Preiss, R. Maser, W. Jaeschke, E. Seyffer, G. Helas, K. Acker, W. Wieprecht, D. Moller, B. G. Arends, J. J. Mols, R. N. Colvile, M. W. Gallagher, K. M. Beswick, K. J. Hargreaves, R. L. Stroreton-West, and M. A. Sutton, “Cloud processing of soluble gases,” Atmos. Environ. 31 (16), 2589–2598 (1997).

    Article  ADS  Google Scholar 

  30. D. L. Sedlak, J. Hoigne, M. M. David, R. N. Colvile, E. Seyffer, K. Acker, T. W. Wiepercht, J. A. Lindii, and S. Fuzz, “The cloudwater chemistry of iron and copper at Great Dun Fell, U.K.,” Atmos. Environ. 31 (16), 2515–2526 (1997).

    Article  ADS  Google Scholar 

  31. M. Liu, Y. Song, T. Zhou, Z. Xu, Y. Caiqing, M. Zheng, Z. Wu, M. Hu, Y. Wu, and T. Zhu, “Fine particle PH during severe haze episodes in northern China,” Geophys. Rev. Lett. 44 (10), 5213–5221 (2017).

    Article  ADS  Google Scholar 

  32. C. Fountoukis and A. Nenes, “ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+\({\text{SO}}_{{\text{4}}}^{{{\text{2}} - }}\)–NO3–Cl–H2O aerosols,” Atmos. Chem. Phys. 7 (17), 4639–4659 (2007).

    Article  ADS  Google Scholar 

  33. S. L. Clegg, P. Brimblecombe, and A. S. Wexler, “Thermodynamic model of the system H+–NH4+\({\text{SO}}_{{\text{4}}}^{{{\text{2}} - }}\)\({\text{NO}}_{{\text{3}}}^{ - }\)–H2O at tropospheric temperatures,” Chem.-Eur. J. 102 (12), 2137–2154 (1998).

    Google Scholar 

  34. H. Berresheim and W. Jaeschke, “Study of metal aerosol systems as a sink for atmospheric SO2,” J. Atmos. Chem. 4 (3), 311 (1986).

    Article  Google Scholar 

  35. L. A. Barrie and H. W. Georgii, “An experimental investigation of the absorption of sulphur dioxide by water drops containing heavy metal ions,” Atmos. Environ. 10 (9), 743–749 (1976).

    Article  ADS  Google Scholar 

  36. D. J. Kaplan, D. M. Himmelblau, and C. Kanaoka, “Oxidation of sulfur dioxide in aqueous ammonium sulfate aerosols containing manganese as a catalyst,” Atmos. Environ. 15 (5), 763–773 (1981).

    Article  ADS  Google Scholar 

  37. F. J. Millero, J. B. Hershey, G. Johnson, and J.-Z. Zhang, “The solubility of SO2 and the 266 dissociation of H2S-O3 in NaCl solutions,” J. Atmos. Chem. 8 (4), 377 (1989).

    Article  Google Scholar 

  38. H. Herrmann, B. Ervens, H.-W. Jacobi, R. Wolke, P. Nowacki, and R. J. Zellner, “CAPRAM 2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry,” J. Atmos. Chem. 36 (3), 231–284 (2000).

    Article  Google Scholar 

  39. R. Van Eldik, N. Coichev, K. B. Reddy, and A. Gerhard, “Metal ion catalyzed autoxidation of sulfur(IV)-oxides: Redox cycling of metal ions induced by sulfite,” Berichte der Bunsengesellschaft fur physikalische Chemie 96 (3), 478–481 (1992).

    Article  Google Scholar 

  40. S. Beilke and G. Gravenhorst, “Heterogeneous SO2 oxidation in the droplet phase,” Atmos. Environ. 12 (7), 231–240 (1978).

    Article  ADS  Google Scholar 

  41. D. A. Hegg and P. V. Hobbs, “Oxidation of sulfur dioxide in aqueous systems with particular reference to the atmosphere,” Atmos. Environ. 12, 241–253 (1978).

    Article  ADS  Google Scholar 

  42. S. E. Schwartz and J. E. Freiberg, “Mass-transport limitations to the rate of reaction of gases in liquid droplets: Application to oxidation of SO2 in aqueous solutions,” Atmos. Environ. A 15 (7), 1129–1144 (1981).

    Article  ADS  Google Scholar 

  43. D. J. Jacob, “Chemistry of OH in remote clouds ant its role in the production of formic acid and peroxymonosulfate,” J. Geophys. Res. 91 (D9), 9807–9826 (1986).

    Article  ADS  Google Scholar 

  44. Y. Cheng, G. Zheng, C. Wei, Q. Mu, B. Zheng, Z. Wang, M. Gao, Q. Zhang, K. He, G. Carmichael, U. Poschl, and H. Su, “Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China,” Sci. Adv. 2, e1601530 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by Ministry of Science and Higher Education of the Russian Federation (Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, topic 1.1-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Aloyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermakov, A.N., Aloyan, A.E., Arutyunyan, V.O. et al. A New Source of Sulfates in the Atmosphere. Atmos Ocean Opt 37, 166–173 (2024). https://doi.org/10.1134/S1024856024700362

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856024700362

Keywords:

Navigation