Abstract
Monitoring data on sulfates in atmospheric haze particles over Beijing in winter 2016 are considered. It is found that the source of sulfates in humidified haze particles is the catalytic oxidation of sulfur dioxide by molecular oxygen involving ions of transition metals \({\text{(S}}{{{\text{O}}}_{{{\text{2}}{\kern 1pt} {\text{(gas)}}}}}\xrightarrow{{{{{\text{Mn}}} \mathord{\left/ {\vphantom {{{\text{Mn}}} {{\text{Fe}}}}} \right. \kern-0em} {{\text{Fe}}}}{\text{,}}{{{\text{O}}}_{{\text{2}}}}}}{\text{SO}}_{{4({\text{aq}})}}^{{2 - }})\) proceeding in a branched mode. Concentration conditions of this process and the features of its dynamics in the atmosphere are discussed. The agreement between the calculated content of \({\text{SO}}_{{4({\text{aq}})}}^{{2 - }}\) in particles and monitoring data indicates that a branched mode of catalytic conversion of SO2 (gas) in the atmosphere exists and represents a new source of sulfates. This fast nonphotochemical channel should be taken into account in inventory system of sulfate sources in the global atmosphere.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.REFERENCES
M. O. Andreae, C. D. Jones, and P. M. Cox, “Strong present-day cooling implies a hot future,” Nature 435 (7046), 1187–1190 (2005).
M. Kulmala, U. Pirjola, and U. Makela, “Stable sulphate clusters as a source of new atmospheric particles,” Nature 404 (6773), 66–69 (2000).
J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics, from Air Pollution to Climate Change (John Wiley & Sons, Hoboken, New Jersey, USA, 2016).
J. Firket, “Fog along the Meuse Valley,” Trans. Faraday Soc. 32, 1192–1196 (1936).
M. L. Bell and D. L. Davis, “Reassessment of the lethal London fog of 1952: Novel indicators of acute and chronic consequences of acute exposure to air pollution,” Environ. Health Perspect. 109 (3), 389–394 (2001).
R. J. Ball and G. D. Robinson, “The origin of haze in the central United States and its effect on solar radiation,” J. Appl. Meteorol. 21 (2), 171–188 (1982).
H. Kim, Q. Zhang, and Y. Sun, “Measurement report: Characterization of severe spring haze episodes and influences of long-range transport in the Seoul metropolitan area in March 2019,” Atmos. Chem. Phys. 20 (19), 11527–11550 (2020).
A. Sirois and L. A. Barrie, “Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995,” J. Geophys. Res. 104 (D9), 11 599–11 618 (1999).
L. A. Barrie and R. M. Hoff, “The oxidation rate and residence time of sulphur dioxide in the Arctic atmosphere,” Atmos. Environ. 18 (12), 2711–2722 (1984).
G. H. Wang, R. Y. Zhang, M. E. Gomes, Y. Song, L. Zhou, J. Cao, J. Hu, G. Tang, Zh. Chen, Z. Li, Z. Hu, C. Peng, C. Lian, Y. Chen, Y. Pan, Y. Zhang, Y. Sun, W. Li, T. Zhu, H. Tian, and M. Ge, “Persistent sulfate formation from London fog to Chinese haze,” Proc. Natl. Acad. Sci. U.S.A. 113 (48), 13 630–13 635 (2016).
T. Liu, S. L. Clegg, and J. P. D. Abbatt, “Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles,” Proc. Natl. Acad. Sci. U.S.A. 117 (3), 1354–1359 (2020).
H. Zhang, Y. Xu, and L. Jia, “A chamber study of catalytic oxidation of SO2 by Mn2+/Fe3+ in aerosol water,” Atmos. Environ. 245, 118019 (2021).
P. Warneck, P. Mirabel, G. A. Salmon, R. van Eldik, C. Winckier, K. J. Wannowious, and C. Zetzsch, “Review of the activities and achievements of the EURO-TRAC subproject HALIPP,” in Heterogeneous and Liquid Phase Processes (Springer, Berlin, Heidelberg, 1996).
P. Liu C. Ye, Ch. Xue, Ch. Zhang, Yu. Mu, and X. Sun, “Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: Gas-phase, heterogeneous and aqueous-phase chemistry,” Atmos. Chem. Phys. 20 (7), 4153–4165 (2020).
G. J. Zheng, F. K. Duan, H. Su, J. L. Ma, Y. Zheng, B. Zheng, Q. Czhang, T. Huang, T. Kimoto, D. Chang, U. Poschl, Y. F. Cheng, and K. B. He, “Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions,” Atmos. Chem. Phys. 15 (6), 2969–2983 (2015).
J. Berglund, S. Fronaeus, and L. I. Elding, “Kinetics and mechanism for manganese-catalyzed oxidation of sulfur(IV) by oxygen in aqueous solution,” Inorg. Chem. 32 (21), 4527–4537 (1993).
D. R. Coughanowr and F. E. Krause, “The reaction of SO2 and O2 in aqueous solutions of MnSO4,” Ind. Eng. Chem. Fund. 4 (1), 61–66 (1965).
I. Grgic, V. Hudnik, M. Bizjak, and J. Levec, “Aqueous S(IV) oxidation—I. Catalytic effects of some metal ions,” Atmos. Environ. 25A (8), 1591–1597 (1991).
T. Ibusuki and K. Takeuchi, “Sulfur dioxide oxidation by oxygen catalyzed by mixtures of manganese(II) and iron(III) in aqueous solutions at environmental reaction conditions,” Atmos. Environ. 21 (7), 1555–1560 (1987).
J. Feichter, E. Kjellstrom, H. Rodhe, F. Dentener, J. Lelieveld, and G.-J. Roelofs, “Simulation of the tropospheric sulfur cycle in a global climate model,” Atmos. Environ. 30 (10–11), 1693–1707 (1996).
B. Alexander, R. J. Park, D. J. Jacob, and S. Gong, “Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget,” J. Geophys. Res.: Atmos. 114, D02309 (2009).
E. Harris, B. Sinha, D. van Pinxteren, A. Tilgner, FombaK. Wadinga, J. Schneider, A. Roth, T. Gnauk, B. Fahlbusch, S. Mertes, T. Lee, J. Collett, S. Foley, S. Borrmann, P. Hoppe, and H. Herrmann, “Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2,” Science 340 (6133), 727–730 (2013).
A. N. Ermakov and A. P. Purmal, “Catalysis of oxidation by manganese ions,” Kinetic. Catal. 43 (2), 249–260 (2002).
A. N. Yermakov, “On the influence of ionic strength on the kinetics of sulfite oxidation in the presence of Mn(II),” Kinetic. Catal. 63 (2), 157–165 (2022).
A. N. Yermakov, A. E. Aloyan, and V. O. Arutyunyan, “Dynamics of sulfate formation in atmospheric haze,” Atmos. Ocean. Opt. 36 (4), 394–399 (2023).
A. N. Yermakov, “On a new mode of catalytic sulfite oxidation in the presence of Mn(II) and excess metal ions,” Kinetic. Catal. 64 (1), 74–84 (2023).
J. R. Mc-Cabe, J. Savarino, B. Alexander, S. Gong, and M. H. Thiemens, “Isotopic constraints on non-photochemical sulfate production in the Arctic winter,” Geophys. Rev. Lett. 33 (5), L05810 (2006).
P. Behra and L. Sigg, “Evidence for redox cycling of iron in atmospheric water droplets,” Nature 344 (6265), 419–421 (1990).
P. Laj, S. Fuzzi, M. C. Facchini, J. A. Lind, G. Orsi, M. Preiss, R. Maser, W. Jaeschke, E. Seyffer, G. Helas, K. Acker, W. Wieprecht, D. Moller, B. G. Arends, J. J. Mols, R. N. Colvile, M. W. Gallagher, K. M. Beswick, K. J. Hargreaves, R. L. Stroreton-West, and M. A. Sutton, “Cloud processing of soluble gases,” Atmos. Environ. 31 (16), 2589–2598 (1997).
D. L. Sedlak, J. Hoigne, M. M. David, R. N. Colvile, E. Seyffer, K. Acker, T. W. Wiepercht, J. A. Lindii, and S. Fuzz, “The cloudwater chemistry of iron and copper at Great Dun Fell, U.K.,” Atmos. Environ. 31 (16), 2515–2526 (1997).
M. Liu, Y. Song, T. Zhou, Z. Xu, Y. Caiqing, M. Zheng, Z. Wu, M. Hu, Y. Wu, and T. Zhu, “Fine particle PH during severe haze episodes in northern China,” Geophys. Rev. Lett. 44 (10), 5213–5221 (2017).
C. Fountoukis and A. Nenes, “ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–\({\text{SO}}_{{\text{4}}}^{{{\text{2}} - }}\)–NO3–Cl−–H2O aerosols,” Atmos. Chem. Phys. 7 (17), 4639–4659 (2007).
S. L. Clegg, P. Brimblecombe, and A. S. Wexler, “Thermodynamic model of the system H+–NH4+– \({\text{SO}}_{{\text{4}}}^{{{\text{2}} - }}\)–\({\text{NO}}_{{\text{3}}}^{ - }\)–H2O at tropospheric temperatures,” Chem.-Eur. J. 102 (12), 2137–2154 (1998).
H. Berresheim and W. Jaeschke, “Study of metal aerosol systems as a sink for atmospheric SO2,” J. Atmos. Chem. 4 (3), 311 (1986).
L. A. Barrie and H. W. Georgii, “An experimental investigation of the absorption of sulphur dioxide by water drops containing heavy metal ions,” Atmos. Environ. 10 (9), 743–749 (1976).
D. J. Kaplan, D. M. Himmelblau, and C. Kanaoka, “Oxidation of sulfur dioxide in aqueous ammonium sulfate aerosols containing manganese as a catalyst,” Atmos. Environ. 15 (5), 763–773 (1981).
F. J. Millero, J. B. Hershey, G. Johnson, and J.-Z. Zhang, “The solubility of SO2 and the 266 dissociation of H2S-O3 in NaCl solutions,” J. Atmos. Chem. 8 (4), 377 (1989).
H. Herrmann, B. Ervens, H.-W. Jacobi, R. Wolke, P. Nowacki, and R. J. Zellner, “CAPRAM 2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry,” J. Atmos. Chem. 36 (3), 231–284 (2000).
R. Van Eldik, N. Coichev, K. B. Reddy, and A. Gerhard, “Metal ion catalyzed autoxidation of sulfur(IV)-oxides: Redox cycling of metal ions induced by sulfite,” Berichte der Bunsengesellschaft fur physikalische Chemie 96 (3), 478–481 (1992).
S. Beilke and G. Gravenhorst, “Heterogeneous SO2 oxidation in the droplet phase,” Atmos. Environ. 12 (7), 231–240 (1978).
D. A. Hegg and P. V. Hobbs, “Oxidation of sulfur dioxide in aqueous systems with particular reference to the atmosphere,” Atmos. Environ. 12, 241–253 (1978).
S. E. Schwartz and J. E. Freiberg, “Mass-transport limitations to the rate of reaction of gases in liquid droplets: Application to oxidation of SO2 in aqueous solutions,” Atmos. Environ. A 15 (7), 1129–1144 (1981).
D. J. Jacob, “Chemistry of OH in remote clouds ant its role in the production of formic acid and peroxymonosulfate,” J. Geophys. Res. 91 (D9), 9807–9826 (1986).
Y. Cheng, G. Zheng, C. Wei, Q. Mu, B. Zheng, Z. Wang, M. Gao, Q. Zhang, K. He, G. Carmichael, U. Poschl, and H. Su, “Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China,” Sci. Adv. 2, e1601530 (2016).
Funding
This work was supported by Ministry of Science and Higher Education of the Russian Federation (Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, topic 1.1-2).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest.
Additional information
Translated by O. Bazhenov
Publisher’s Note.
Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yermakov, A.N., Aloyan, A.E., Arutyunyan, V.O. et al. A New Source of Sulfates in the Atmosphere. Atmos Ocean Opt 37, 166–173 (2024). https://doi.org/10.1134/S1024856024700362
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856024700362