Abstract
Lichens are not only a bioindicator of air pollution; they also affect the chemical composition of air. The qualitative composition of exometabolites in thalli of epiphytic lichens is studied using high-performance liquid chromatography. The comparative analysis of the fractional composition of deposited aerosol matter in water washouts of lichens shows it to be characterized by a bimodal particle distribution. It is postulated that the appearance of the fine fraction is associated with the generation of secondary organic aerosols on the surface of epiphytic lichens. Their precursors are the products of photoactivated reactions between deposited aerosol matter and highly volatile organic compounds which arrive on the lichen surface as a result of efflorescence. The mechanism of entry of secondary organic aerosols into the surface air layer under the radiometric photophoresis effect is discussed.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.REFERENCES
V. V. Gorshkov, Epiphytic Lichens as Indicators of Air Pollution. Methodological Recommendations (Kola Scientific Center, Apatity, 1991) [in Russian].
M. G. Opekunova, Bioindication of Pollution (St.-Petersburg University, St. Petersburg, 2016) [in Russian].
M. Saniewski, P. Wietrzyk-Pelka, T. Zalewska, and M. H. Wegrzyn, “Current radioactive fallout contamination along a trans-European gradient assessed using terricolous lichens,” Chemosphere 304 (2022). https://doi.org/10.1016/j.chemosphere.2022.135281
L. G. Byazrov, Lichens in Environmental Monitoring (Nauchnyi mir, Moscow, 2002) [in Russian].
M. E. Conti and G. Cecchetti, “Biological monitoring: lichens as bioindicators of air pollution assessment—a review,” Environ. Pollut. 114 (3), 471–492 (2001). https://doi.org/10.1016/S0269-7491(00)00224-4
M. Glasius and A. H. Goldstein, “Recent discoveries and future challenges in atmospheric organic chemistry,” Environ. Sci. Technol. 50, 2754–2764 (2016). https://doi.org/10.1021/acs.est.5b05105
J. Penuelas and M. Staudt, “BVOCs and global change,” Trends Plant Sci. 15, 133–144 (2010). https://doi.org/10.1016/j.tplants.2009.12.005
M. Kulmala, “How particles nucleate and grow,” Science 302, 1000–1001 (2003). https://doi.org/10.1126/science.1090848
M. Kulmala, H. Vehkamaki, T. Petaja, MasoM. Dal, A. Lauri, V.-M. Kerminen, W. Birmili, and P. H. McMurry, “Formation and growth rates of ultrafine atmospheric particles: A review of observations,” J. Aerosol Sci. 35 (2), 143–176 (2004). https://doi.org/10.1016/j.jaerosci.2003.10.003
T. Petӓjӓ, K. Tabakova, A. Manninen, E. Ezhova, E. O’Connor, D. Moisseev, V. A. Sinclair, J. Backman, J. Levula, K. Luoma, A. Virkkula, M. Paramonov, M. Rӓty, M. Ӓijӓlӓ, L. Heikkinen, M. Ehn, M. Sipilӓ, T. Yli-Juuti, A. Virtanen, M. Ritsche, N. Hickmon, G. Pulik, D. Rosenfeld, D. R. Worsnop, J. Bӓck, M. Kulmala, and K.-M. Kerminen, “Influence of biogenic emissions from boreal forests on aerosol–cloud interactions,” Nat. Geosci. 15, 42–47 (2022). https://doi.org/10.1038/s41561-021-00876-0
R. Dixon and D. Strack, “Phytochemistry meets genome analysis, and beyond,” Phytochemistry 62, 815–816 (2003). https://doi.org/10.1016/S0031-9422(02)00712-4
J. S. Lamke and S. B. Unsicker, “Phytochemical variation in treetops: Causes and consequences for tree-insect herbivore interactions,” Oecologia 187, 377–388 (2018). https://doi.org/10.1007/s00442-018-4087-5
M. Wink, “Introduction: Biochemistry, physiology, and ecological functions of secondary metabolites,” Ann. Plant Rev. 40, 1–19 (2010).
S. Bosch, Phenolic Acids: Composition, Applications and Health Benefits (Nova Science Publishers, New York, 2012).
A. Edtbauer, E. Y. Pfannerstill, A. P. P. Florentino, C. G. G. Barbosa, E. Rodriguez-Caballero, N. Zannoni, R. P. Alves, S. Wolff, A. Tsokankunku, A. Aptroot, M. D. Sá, A. C. De Araujo, M. Sorgel, S.M. De Oliveira, B. Weber, and J. Williams, “Cryptogamic organisms are a substantial source and sink for volatile organic compounds in the Amazon region,” Commun. Earth Environ. 2, 258 (2021). https://doi.org/10.1038/s43247-021-00328-y
D. T. Hanson, S. Swanson, L. E. Graham, and T. D. Sharkey, “Evolutionary significance of isoprene emission from mosses,” Am. J. Bot. 86, 634–639 (1999). https://doi.org/10.2307/2656571
J. Kesselmeier, “Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: A compilation of field and laboratory studies,” J. Atmos. Chem. 39, 219–233 (2001). https://doi.org/10.1023/A:1010632302076
O. M. Khramchenkova, “Hypogymnia physodes, Evernia prunastri, Cladonia arbuscula and Xanthoria parietina lichens as sources of the substances with antibacterial activity Byull. Bryanskogo Otdeleniya Russ. Botanicheskogo Obshchestva, No. 1, 50–58 (2017).
M. Piznak and M. Backor, “Lichens affect boreal forest ecology and plant metabolism,” S. Afr. J. Bot. 124, 530–539 (2019). https://doi.org/10.1016/j.sajb.2019.06.025
S. Yousuf, M. I. Choudhary, and Atta-Ur-Rahman. Lichens: chemistry and biological activities, Stud. Nat. Prod. Chem. 43, 223–259 (2014). https://doi.org/10.1016/B978-0-444-63430-6.00007-2
www.researchgate.net/publication/282766279_Atlas_of_ Images_of_Thin_Layer_Chromatograms_of_Lichen_ Substances. Cited November 29, 2022.
E. Calla-Quispe, H. L. Fuentes-Rivera, P. Ramirez, C. Martel, and A. J. Ibanez, “Mass spectrometry: A rosetta stone to learn how fungi interact and talk,” Life-Basel 10 (22) (2020). https://doi.org/10.3390/life10060089
R. Lindroth, “Atmospheric change, plant secondary metabolites and ecological interactions,” in The Ecology of Plant Secondary Metabolites: From Genes to Global Processes, Ed. by G. Iason, M. Dicke, and S. Hartley (Cambridge University Press, Cambridge, 2012). https://doi.org/10.1017/CBO9780511675751.008
K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J. F. Muller, U. Kuhn, P. Stefani, and W. Knorr, “Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years,” Atmos. Chem. Phys. 14 (17), 9317–9341 (2014). https://doi.org/10.5194/acp-14-9317-2014
J. K. Holopainen, M. Kivimaenpää, and S. A. Nizkorodov, “Plant-derived secondary organic material in the air and ecosystems,” Trends Plant Sci. 22 (9), 744–753 (2017). https://doi.org/10.1016/j.tplants.2017.07.004
W. H. Chen, A. B. Guenther, X. M. Wang, Y. H. Chen, D. S. Gu, M. Chang, S. Z. Zhou, L. L. Wu, and Y. Q. Zhang, “Regional to global biogenic isoprene emission responses to changes in vegetation from 2000 to 2015,” J. Geophys. Res.: Atmos. 123 (7), 3757–3771 (2018).
J. K. Holopainen, V. Virjamo, R. P. Ghimire, J. D. Blande, R. Julkunen-Tiitto, and M. Kivimaenpää, “Climate change effects on secondary compounds of forest trees in the Northern Hemisphere,” Front. Plant Sci. 9 (2018). https://doi.org/10.3389/fpls.2018.01445
M. Kramshoj, I. Vedel-Petersen, M. Schollert, A. Rinnan, J. Nymand, H. Ro-Poulsen, and R. Rinnan, “Large increases in Arctic biogenic volatile emissions are a direct effect of warming,” Nat. Geosci. 9 (5), 349–352 (2016). https://doi.org/10.1038/ngeo2692
T. Yli-Juuti, T. Mielonen, L. Heikkinen, A. Arola, M. Ehn, S. Isokaanta, H. -M. Keskinen, M. Kulmala, A. Laakso, A. Lipponen, K. Luoma, S. Mikkonen, T. Nieminen, P. Paasonen, T. Petäjä, S. Romakkaniemi, J. Tonttila, H. Kokkola, and A. Virtanen, “Significance of the organic aerosol driven climate feedback in the boreal area,” Nat. Commun. 12, 5637 (2021). https://doi.org/10.1038/s41467-021-25850-7
I. Ryde, C. L. Davie-Martin, T. Li, M. P. Naursgaard, and R. Rinnan, “Volatile organic compound emissions from subarctic mosses and lichens,” Atmos. Environ. 290, 5637 (2022). https://doi.org/10.1016/j.atmosenv.2022.119357
A. Nordin, R. Moberg, T. Tonsberg, O. Vitikainen, A. Dalsatt, M. Myrdal, D. Snitting, and S. Ekman, Santesson’s Checklist of Fennoskandian Lichen-Forming and Lichenicolous Fungi. http://130.238.83.220/santesson/home.php.Evolutionsmussiet. Cited May 19, 2023.
Plant Life, Vol. 3, Algae. Lichens, Ed. by M.M. Gollerbakha (Prosveshchenie, Moscow, 1977) [in Russian].
Russian Lichen Flora: Biology, Ecology, Diversity, Distribution, and Methods for Studying Lichens, Ed. by M.P. Andreev and D.E. Gimel’brant (Tovarishchestvo nauchnykh izdanii KMK, Moscow, St. Petersburg, 2014) [in Russian].
T. K. Goryshina, Plant Ecology. Manual (Vysshaya shkola, Moscow, 1979) [in Russian].
Key to Russian Lichens, Is. 6, Alectoriaceae, Parmeliaceae, and Stereocaulonaceae, Ed. by N.S. Golubkova (Nauka, St. Petersburg, 1996) [in Russian]. https://reallib.org/reader?file=545722&pg=4. Cited August 19, 2023.
T. M. Kharpukhaeva, “About apothecia of Evernia mesomorpha and Evernia esorediosa,” Byull. Botanicheskogo Sada-Instituta DVO RAN, No. 19, 65–68 (2018). https://doi.org/10.17581/bbgi1908
M. P. Andreev, T. Akhti, L. V. Gagarina, and D. E. Gimel’brant, Russian Lichen Flora: Parmeliaceae Family (Tovarishchestvo nauchnykh izdanii KMK, Moscow, St. Petersburg, 2022), pp. 54–56 [in Russian].
P. N. Belyi, Lichens of Belarus Spruce Forests (Belaruskaya navuka, Minsk, 2016) [in Russian].
A. Blazhei and L. Shutyi, Plant Phenolic Compounds(Mir, Moscow, 1977) [in Russian].
M. N. Zaprometov, Phenolic Compounds: Distribution, Metabolism, and functions in plants (Nauka, Moscow, 1993) [in Russian].
M. J. Giertych, P. Karolewski, and L. O. de Temmerman, “Foliage age and pollution alter content of phenolic compounds and chemical elements in Pinus Nigra needles,” Water Air Soil Pollut. 110, 363–377 (1999). https://doi.org/10.1023/A:1005009214988
A. Ahajji, P. N. Diouf, F. Aloui, I. Elbakali, D. Perrin, A. Merlin, and B. George, “Influence of heat treatment on antioxidant properties and colour stability of beech and spruce wood and their extractives,” Wood Sci. Technol. 43 (1), 69–83 (2009). https://doi.org/10.1007/s00226-008-0208-3
State Report “On the state of the Environment of the Komi Republic in 2020” (Minprirody Respubliki Komi, Syktyvkar, 2021) [in Russian]. https://mpr.rkomi.ru/uploads/documents/gosdoklad_2020_elektronnaya_versiya_v2_2021-06-22_08-45-11.pdf. Cited December 2, 2022.
N. A. Tyukavkina and Yu. I. Baukov, Bioorganic Chemistry (Drofa, Moscow, 2004) [in Russian].
M. P. Tentyukov, V. I. Mikhailov, D. A. Timushev, B. D. Belan, and D. V. Simonenkov, “Granulometric composition of settled aerosol material and ratio of phenolic compounds in different-age needles,” Atmos. Ocean. Opt. 34 (3), 222–228 (2021).
M. P. Tentyukov, B. D. Belan, D. V. Simonenkov, and V. I. Mikhailov, “Generation of secondary organic aerosols on needle surfaces and their entry into the winter forest canopy under radiometric photophoresis,” Atmos. Ocean. Opt. 35 (5), 490–496 (2022).
S. Imada, K. Acharya, and N. Yamanaka, “Short-term and diurnal patterns of salt secretion by Tamarix ramosis-sima and their relationships with climatic factors,” J. Arid Environ. 83 (8), 62–68 (2012). https://doi.org/10.1016/j.jaridenv.2012.03.006
A. Singer, W. F. A. Kirsten, and C. Buhmann, “A proposed fog deposition mechanism for the formation of salt efflorescences in the Mpumalanga Highveld, Republic of South Africa,” Water Air Soil Pollut. 109 (1-4), 313–325 (1999).
K. R. Wieder, M. A. Vile, D. H. Vittf, K. D. Scott, B. Xu, J. C. Quinn, and C. M. Albright, “Can plant or lichen natural abundance 15N ratios indicate the influence of oil sands N emissions on bogs?,” J. Hydrology: Regional Studies 101030 (2022). https://doi.org/10.1016/j.ejrh.2022.101030
M. Yu. Arshinov and B. D. Belan, “Diurnal behavior of the concentration of fine and ultrafine aerosol,” Atmos. Ocean. Opt. 13 (11), 909–916 (2000).
S. A. Beresnev, F. D. Kovalev, L. B. Kochneva, V. A. Runkov, P. E. Suetin, and A. A. Cheremisin, “On the possibility of particle’s photophoretic levitation in the stratosphere,” Atmos. Ocean. Opt. 16 (1), 44–48 (2003).
S. A. Beresnev, L. B. Kochneva, P. E. Suetin, V. I. Zakharov, and K. G. Gribanov, “Photophoresis of atmospheric aerosols in the Earth’s thermal radiation field,” Atmos. Ocean. Opt. 16 (5–6), 431–438 (2003).
S. A. Beresnev, L. B. Kochneva, V. I. Zakharov, and K. G. Gribanov, “Photophoresis of soot aerosol in the Earth’ thermal radiation field,” Opt. Atmos. Okeana 24 (7), 597–600 (2011).
A. Kaddes, M.-L. Fauconnier, K. Sassi, B. Nasraoui, and M.-H. Jijakli, “Endophytic fungal volatile compounds as solution for sustainable agriculture,” Molecules 24 (6) (2019). https://doi.org/10.3390/molecules24061065
M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, A. S. Kozlov, S. B. Malyshkin, D. V. Simonenkov, and P. N. Antokhin, “Nucleation bursts in the atmosphere over boreal zone in West Siberia. Part I. Classification and frequency Opt. Atmos. Okeana 27 (9), 766–774 (2014).
ACKNOWLEDGMENTS
UV spectroscopy of water washouts of epiphytic lichens and their biochemical analysis were carried out at the Common Use Center “Chemistry” of Institute of Chemistry, Komi Science Center, Ural Branch, Russian Academy of Sciences. Instruments for isotope analysis were provided by the e Tomsk Common Use Center, Siberian Branch, Russian Academy of Sciences.
The authors are grateful to M.Yu. Arshinov for constructive comments, which significantly increased the scientific significance of the paper.
Funding
The study was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors of this work declare that they have no conflicts of interest.
Additional information
Publisher’s Note.
Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tentyukov, M.P., Belan, B.D., Simonenkov, D.V. et al. Lichen Exometabolites as Possible Precursors of Secondary Organic Aerosols. Atmos Ocean Opt 37, 174–182 (2024). https://doi.org/10.1134/S1024856024700210
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856024700210