Skip to main content
Log in

Lichen Exometabolites as Possible Precursors of Secondary Organic Aerosols

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Lichens are not only a bioindicator of air pollution; they also affect the chemical composition of air. The qualitative composition of exometabolites in thalli of epiphytic lichens is studied using high-performance liquid chromatography. The comparative analysis of the fractional composition of deposited aerosol matter in water washouts of lichens shows it to be characterized by a bimodal particle distribution. It is postulated that the appearance of the fine fraction is associated with the generation of secondary organic aerosols on the surface of epiphytic lichens. Their precursors are the products of photoactivated reactions between deposited aerosol matter and highly volatile organic compounds which arrive on the lichen surface as a result of efflorescence. The mechanism of entry of secondary organic aerosols into the surface air layer under the radiometric photophoresis effect is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. V. V. Gorshkov, Epiphytic Lichens as Indicators of Air Pollution. Methodological Recommendations (Kola Scientific Center, Apatity, 1991) [in Russian].

    Google Scholar 

  2. M. G. Opekunova, Bioindication of Pollution (St.-Petersburg University, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  3. M. Saniewski, P. Wietrzyk-Pelka, T. Zalewska, and M. H. Wegrzyn, “Current radioactive fallout contamination along a trans-European gradient assessed using terricolous lichens,” Chemosphere 304 (2022). https://doi.org/10.1016/j.chemosphere.2022.135281

  4. L. G. Byazrov, Lichens in Environmental Monitoring (Nauchnyi mir, Moscow, 2002) [in Russian].

  5. M. E. Conti and G. Cecchetti, “Biological monitoring: lichens as bioindicators of air pollution assessment—a review,” Environ. Pollut. 114 (3), 471–492 (2001). https://doi.org/10.1016/S0269-7491(00)00224-4

    Article  Google Scholar 

  6. M. Glasius and A. H. Goldstein, “Recent discoveries and future challenges in atmospheric organic chemistry,” Environ. Sci. Technol. 50, 2754–2764 (2016). https://doi.org/10.1021/acs.est.5b05105

    Article  ADS  Google Scholar 

  7. J. Penuelas and M. Staudt, “BVOCs and global change,” Trends Plant Sci. 15, 133–144 (2010). https://doi.org/10.1016/j.tplants.2009.12.005

    Article  Google Scholar 

  8. M. Kulmala, “How particles nucleate and grow,” Science 302, 1000–1001 (2003). https://doi.org/10.1126/science.1090848

    Article  Google Scholar 

  9. M. Kulmala, H. Vehkamaki, T. Petaja, MasoM. Dal, A. Lauri, V.-M. Kerminen, W. Birmili, and P. H. McMurry, “Formation and growth rates of ultrafine atmospheric particles: A review of observations,” J. Aerosol Sci. 35 (2), 143–176 (2004). https://doi.org/10.1016/j.jaerosci.2003.10.003

    Article  ADS  Google Scholar 

  10. T. Petӓjӓ, K. Tabakova, A. Manninen, E. Ezhova, E. O’Connor, D. Moisseev, V. A. Sinclair, J. Backman, J. Levula, K. Luoma, A. Virkkula, M. Paramonov, M. Rӓty, M. Ӓijӓlӓ, L. Heikkinen, M. Ehn, M. Sipilӓ, T. Yli-Juuti, A. Virtanen, M. Ritsche, N. Hickmon, G. Pulik, D. Rosenfeld, D. R. Worsnop, J. Bӓck, M. Kulmala, and K.-M. Kerminen, “Influence of biogenic emissions from boreal forests on aerosol–cloud interactions,” Nat. Geosci. 15, 42–47 (2022). https://doi.org/10.1038/s41561-021-00876-0

    Article  ADS  Google Scholar 

  11. R. Dixon and D. Strack, “Phytochemistry meets genome analysis, and beyond,” Phytochemistry 62, 815–816 (2003). https://doi.org/10.1016/S0031-9422(02)00712-4

    Article  Google Scholar 

  12. J. S. Lamke and S. B. Unsicker, “Phytochemical variation in treetops: Causes and consequences for tree-insect herbivore interactions,” Oecologia 187, 377–388 (2018). https://doi.org/10.1007/s00442-018-4087-5

    Article  ADS  Google Scholar 

  13. M. Wink, “Introduction: Biochemistry, physiology, and ecological functions of secondary metabolites,” Ann. Plant Rev. 40, 1–19 (2010).

    Google Scholar 

  14. S. Bosch, Phenolic Acids: Composition, Applications and Health Benefits (Nova Science Publishers, New York, 2012).

    Google Scholar 

  15. A. Edtbauer, E. Y. Pfannerstill, A. P. P. Florentino, C. G. G. Barbosa, E. Rodriguez-Caballero, N. Zannoni, R. P. Alves, S. Wolff, A. Tsokankunku, A. Aptroot, M. D. Sá, A. C. De Araujo, M. Sorgel, S.M. De Oliveira, B. Weber, and J. Williams, “Cryptogamic organisms are a substantial source and sink for volatile organic compounds in the Amazon region,” Commun. Earth Environ. 2, 258 (2021). https://doi.org/10.1038/s43247-021-00328-y

    Article  ADS  Google Scholar 

  16. D. T. Hanson, S. Swanson, L. E. Graham, and T. D. Sharkey, “Evolutionary significance of isoprene emission from mosses,” Am. J. Bot. 86, 634–639 (1999). https://doi.org/10.2307/2656571

    Article  Google Scholar 

  17. J. Kesselmeier, “Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: A compilation of field and laboratory studies,” J. Atmos. Chem. 39, 219–233 (2001). https://doi.org/10.1023/A:1010632302076

    Article  Google Scholar 

  18. O. M. Khramchenkova, “Hypogymnia physodes, Evernia prunastri, Cladonia arbuscula and Xanthoria parietina lichens as sources of the substances with antibacterial activity Byull. Bryanskogo Otdeleniya Russ. Botanicheskogo Obshchestva, No. 1, 50–58 (2017).

    Google Scholar 

  19. M. Piznak and M. Backor, “Lichens affect boreal forest ecology and plant metabolism,” S. Afr. J. Bot. 124, 530–539 (2019). https://doi.org/10.1016/j.sajb.2019.06.025

    Article  Google Scholar 

  20. S. Yousuf, M. I. Choudhary, and Atta-Ur-Rahman. Lichens: chemistry and biological activities, Stud. Nat. Prod. Chem. 43, 223–259 (2014). https://doi.org/10.1016/B978-0-444-63430-6.00007-2

    Article  Google Scholar 

  21. www.researchgate.net/publication/282766279_Atlas_of_ Images_of_Thin_Layer_Chromatograms_of_Lichen_ Substances. Cited November 29, 2022.

  22. E. Calla-Quispe, H. L. Fuentes-Rivera, P. Ramirez, C. Martel, and A. J. Ibanez, “Mass spectrometry: A rosetta stone to learn how fungi interact and talk,” Life-Basel 10 (22) (2020). https://doi.org/10.3390/life10060089

  23. R. Lindroth, “Atmospheric change, plant secondary metabolites and ecological interactions,” in The Ecology of Plant Secondary Metabolites: From Genes to Global Processes, Ed. by G. Iason, M. Dicke, and S. Hartley (Cambridge University Press, Cambridge, 2012). https://doi.org/10.1017/CBO9780511675751.008

    Book  Google Scholar 

  24. K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J. F. Muller, U. Kuhn, P. Stefani, and W. Knorr, “Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years,” Atmos. Chem. Phys. 14 (17), 9317–9341 (2014). https://doi.org/10.5194/acp-14-9317-2014

    Article  ADS  Google Scholar 

  25. J. K. Holopainen, M. Kivimaenpää, and S. A. Nizkorodov, “Plant-derived secondary organic material in the air and ecosystems,” Trends Plant Sci. 22 (9), 744–753 (2017). https://doi.org/10.1016/j.tplants.2017.07.004

    Article  Google Scholar 

  26. W. H. Chen, A. B. Guenther, X. M. Wang, Y. H. Chen, D. S. Gu, M. Chang, S. Z. Zhou, L. L. Wu, and Y. Q. Zhang, “Regional to global biogenic isoprene emission responses to changes in vegetation from 2000 to 2015,” J. Geophys. Res.: Atmos. 123 (7), 3757–3771 (2018).

    Article  ADS  Google Scholar 

  27. J. K. Holopainen, V. Virjamo, R. P. Ghimire, J. D. Blande, R. Julkunen-Tiitto, and M. Kivimaenpää, “Climate change effects on secondary compounds of forest trees in the Northern Hemisphere,” Front. Plant Sci. 9 (2018). https://doi.org/10.3389/fpls.2018.01445

  28. M. Kramshoj, I. Vedel-Petersen, M. Schollert, A. Rinnan, J. Nymand, H. Ro-Poulsen, and R. Rinnan, “Large increases in Arctic biogenic volatile emissions are a direct effect of warming,” Nat. Geosci. 9 (5), 349–352 (2016). https://doi.org/10.1038/ngeo2692

    Article  ADS  Google Scholar 

  29. T. Yli-Juuti, T. Mielonen, L. Heikkinen, A. Arola, M. Ehn, S. Isokaanta, H. -M. Keskinen, M. Kulmala, A. Laakso, A. Lipponen, K. Luoma, S. Mikkonen, T. Nieminen, P. Paasonen, T. Petäjä, S. Romakkaniemi, J. Tonttila, H. Kokkola, and A. Virtanen, “Significance of the organic aerosol driven climate feedback in the boreal area,” Nat. Commun. 12, 5637 (2021). https://doi.org/10.1038/s41467-021-25850-7

    Article  ADS  Google Scholar 

  30. I. Ryde, C. L. Davie-Martin, T. Li, M. P. Naursgaard, and R. Rinnan, “Volatile organic compound emissions from subarctic mosses and lichens,” Atmos. Environ. 290, 5637 (2022). https://doi.org/10.1016/j.atmosenv.2022.119357

    Article  Google Scholar 

  31. A. Nordin, R. Moberg, T. Tonsberg, O. Vitikainen, A. Dalsatt, M. Myrdal, D. Snitting, and S. Ekman, Santesson’s Checklist of Fennoskandian Lichen-Forming and Lichenicolous Fungi. http://130.238.83.220/santesson/home.php.Evolutionsmussiet. Cited May 19, 2023.

  32. Plant Life, Vol. 3, Algae. Lichens, Ed. by M.M. Gollerbakha (Prosveshchenie, Moscow, 1977) [in Russian].

    Google Scholar 

  33. Russian Lichen Flora: Biology, Ecology, Diversity, Distribution, and Methods for Studying Lichens, Ed. by M.P. Andreev and D.E. Gimel’brant (Tovarishchestvo nauchnykh izdanii KMK, Moscow, St. Petersburg, 2014) [in Russian].

  34. T. K. Goryshina, Plant Ecology. Manual (Vysshaya shkola, Moscow, 1979) [in Russian].

  35. Key to Russian Lichens, Is. 6, Alectoriaceae, Parmeliaceae, and Stereocaulonaceae, Ed. by N.S. Golubkova (Nauka, St. Petersburg, 1996) [in Russian]. https://reallib.org/reader?file=545722&pg=4. Cited August 19, 2023.

  36. T. M. Kharpukhaeva, “About apothecia of Evernia mesomorpha and Evernia esorediosa,” Byull. Botanicheskogo Sada-Instituta DVO RAN, No. 19, 65–68 (2018). https://doi.org/10.17581/bbgi1908

  37. M. P. Andreev, T. Akhti, L. V. Gagarina, and D. E. Gimel’brant, Russian Lichen Flora: Parmeliaceae Family (Tovarishchestvo nauchnykh izdanii KMK, Moscow, St. Petersburg, 2022), pp. 54–56 [in Russian].

  38. P. N. Belyi, Lichens of Belarus Spruce Forests (Belaruskaya navuka, Minsk, 2016) [in Russian].

  39. A. Blazhei and L. Shutyi, Plant Phenolic Compounds(Mir, Moscow, 1977) [in Russian].

  40. M. N. Zaprometov, Phenolic Compounds: Distribution, Metabolism, and functions in plants (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  41. M. J. Giertych, P. Karolewski, and L. O. de Temmerman, “Foliage age and pollution alter content of phenolic compounds and chemical elements in Pinus Nigra needles,” Water Air Soil Pollut. 110, 363–377 (1999). https://doi.org/10.1023/A:1005009214988

    Article  ADS  Google Scholar 

  42. A. Ahajji, P. N. Diouf, F. Aloui, I. Elbakali, D. Perrin, A. Merlin, and B. George, “Influence of heat treatment on antioxidant properties and colour stability of beech and spruce wood and their extractives,” Wood Sci. Technol. 43 (1), 69–83 (2009). https://doi.org/10.1007/s00226-008-0208-3

    Article  Google Scholar 

  43. State Report “On the state of the Environment of the Komi Republic in 2020” (Minprirody Respubliki Komi, Syktyvkar, 2021) [in Russian]. https://mpr.rkomi.ru/uploads/documents/gosdoklad_2020_elektronnaya_versiya_v2_2021-06-22_08-45-11.pdf. Cited December 2, 2022.

  44. N. A. Tyukavkina and Yu. I. Baukov, Bioorganic Chemistry (Drofa, Moscow, 2004) [in Russian].

  45. M. P. Tentyukov, V. I. Mikhailov, D. A. Timushev, B. D. Belan, and D. V. Simonenkov, “Granulometric composition of settled aerosol material and ratio of phenolic compounds in different-age needles,” Atmos. Ocean. Opt. 34 (3), 222–228 (2021).

    Article  Google Scholar 

  46. M. P. Tentyukov, B. D. Belan, D. V. Simonenkov, and V. I. Mikhailov, “Generation of secondary organic aerosols on needle surfaces and their entry into the winter forest canopy under radiometric photophoresis,” Atmos. Ocean. Opt. 35 (5), 490–496 (2022).

    Article  Google Scholar 

  47. S. Imada, K. Acharya, and N. Yamanaka, “Short-term and diurnal patterns of salt secretion by Tamarix ramosis-sima and their relationships with climatic factors,” J. Arid Environ. 83 (8), 62–68 (2012). https://doi.org/10.1016/j.jaridenv.2012.03.006

    Article  ADS  Google Scholar 

  48. A. Singer, W. F. A. Kirsten, and C. Buhmann, “A proposed fog deposition mechanism for the formation of salt efflorescences in the Mpumalanga Highveld, Republic of South Africa,” Water Air Soil Pollut. 109 (1-4), 313–325 (1999).

    Article  ADS  Google Scholar 

  49. K. R. Wieder, M. A. Vile, D. H. Vittf, K. D. Scott, B. Xu, J. C. Quinn, and C. M. Albright, “Can plant or lichen natural abundance 15N ratios indicate the influence of oil sands N emissions on bogs?,” J. Hydrology: Regional Studies 101030 (2022). https://doi.org/10.1016/j.ejrh.2022.101030

  50. M. Yu. Arshinov and B. D. Belan, “Diurnal behavior of the concentration of fine and ultrafine aerosol,” Atmos. Ocean. Opt. 13 (11), 909–916 (2000).

    Google Scholar 

  51. S. A. Beresnev, F. D. Kovalev, L. B. Kochneva, V. A. Runkov, P. E. Suetin, and A. A. Cheremisin, “On the possibility of particle’s photophoretic levitation in the stratosphere,” Atmos. Ocean. Opt. 16 (1), 44–48 (2003).

    Google Scholar 

  52. S. A. Beresnev, L. B. Kochneva, P. E. Suetin, V. I. Zakharov, and K. G. Gribanov, “Photophoresis of atmospheric aerosols in the Earth’s thermal radiation field,” Atmos. Ocean. Opt. 16 (5–6), 431–438 (2003).

    Google Scholar 

  53. S. A. Beresnev, L. B. Kochneva, V. I. Zakharov, and K. G. Gribanov, “Photophoresis of soot aerosol in the Earth’ thermal radiation field,” Opt. Atmos. Okeana 24 (7), 597–600 (2011).

    Google Scholar 

  54. A. Kaddes, M.-L. Fauconnier, K. Sassi, B. Nasraoui, and M.-H. Jijakli, “Endophytic fungal volatile compounds as solution for sustainable agriculture,” Molecules 24 (6) (2019). https://doi.org/10.3390/molecules24061065

  55. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, A. S. Kozlov, S. B. Malyshkin, D. V. Simonenkov, and P. N. Antokhin, “Nucleation bursts in the atmosphere over boreal zone in West Siberia. Part I. Classification and frequency Opt. Atmos. Okeana 27 (9), 766–774 (2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

UV spectroscopy of water washouts of epiphytic lichens and their biochemical analysis were carried out at the Common Use Center “Chemistry” of Institute of Chemistry, Komi Science Center, Ural Branch, Russian Academy of Sciences. Instruments for isotope analysis were provided by the e Tomsk Common Use Center, Siberian Branch, Russian Academy of Sciences.

The authors are grateful to M.Yu. Arshinov for constructive comments, which significantly increased the scientific significance of the paper.

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Tentyukov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tentyukov, M.P., Belan, B.D., Simonenkov, D.V. et al. Lichen Exometabolites as Possible Precursors of Secondary Organic Aerosols. Atmos Ocean Opt 37, 174–182 (2024). https://doi.org/10.1134/S1024856024700210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856024700210

Keywords:

Navigation