Skip to main content
Log in

Calculation of the Absorption Coefficient of Ar-Broadened CO2 in the 4.3 μm Band Wing on the Basis of Asymptotic Line Wing Theory

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Carbon dioxide absorption broadened by argon is studied on the basis of the asymptotic line wing theory. The line shape parameters concerned with the classical potential, which governs the center-of-mass motion, and the quantum intermolecular interaction potential are found. The temperature dependence of the CO2–Ar absorption beyond the 4.3 μm band edge is explained through changes in the classical potential, which describes the temperature behavior of the second virial coefficient in the temperature region under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. B. H. Winters, S. Silverman, and W. S. Benedict, “Line shape in the wing beyond the band head of the 4.3 μm band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4 (4), 527–537 (1964).

    Article  ADS  Google Scholar 

  2. D. E. Burch, D. A. Gryvnak, R. R. Patty, and Ch. E. Bartky, “Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO2 lines,” J. Opt. Soc. Amer. 59 (3), 267–280 (1969).

    Article  ADS  Google Scholar 

  3. A. B. Dokuchaev and M. V. Tonkov, “Detection of the shapes of rovibrational line profiles in CO2 absorption band,” Opt. Spektroskop. 48 (4), 738–744 (1980).

    Google Scholar 

  4. Kh. Santarov and M. V. Tonkov, “Study of IR absorption in the wing of the rovibration SO2 ν3 band,” Opt. Spektroskop. 54, 944–946 (1983).

    Google Scholar 

  5. M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, and N. N. Filipov, “Influence of the line interference on the vibration-rotation band shapes,” J. Quant. Spectrosc. Radiat. Transfer 31 (6), 521–543 (1984).

    Article  ADS  Google Scholar 

  6. M. O. Bulanin, M. V. Tonkov, and N. N. Filippov, “Study of collision-induced rotational perturbations in gases via the wing shape of infrared bands,” Can. J. Phys. 62, 1306–1314 (1984).

    Article  ADS  Google Scholar 

  7. J. Boissoles, V. Menoux, R. Le Doucen, C. Boulet, and D. Robert, “Collisionally induced population transfer effects in infrared absorption spectra. II. The wing of the ar-broadened ν3 band of CO2,” J. Chem. Phys. 91 (4), 2163–2171 (1989).

    Article  ADS  Google Scholar 

  8. J. Boissoles, C. Boulet, J. M. Hartmann, M. Y. Perrin, and D. Robert, “Collision-induced population transfer in infrared absorption spectra. III. Temperature dependence of absorption in the air-broadened wing of CO2 ν3 band,” J. Chem. Phys. 93 (4), 2217–2221 (1990).

    Article  ADS  Google Scholar 

  9. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Profile and Molecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  10. S. D. Tvorogov and O. B. Rodimova, Spectral Line Collisional Profile (Publishing House of IAO SB RAS, Tomsk, 2013) [in Russian].

    Google Scholar 

  11. H. Tran, C. Boulet, S. Stefani, M. Snels, and G. Piccioni, “Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm–1. I—Central and wing regions of the allowed vibrational bands,” J. Quant. Spectrosc. Radiat. Transfer 112 (6), 925–936 (2011).

    Article  ADS  Google Scholar 

  12. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, “Absorption coefficient in the wings of carbon dioxide bands in the 790–910-cm–1 spectrum range,” Sov. Phys. J. 25 (5), 475–478 (1982).

    Article  Google Scholar 

  13. G. V. Telegin and V. V. Fomin, “Calculation of the absorption coefficient in SO2 spectrum. Microwindows and periphery of 4.3 μm SO2 band; broadening by Ar and He,” Opt. Spektroskop. 52 (2), 247–252 (1982).

    Google Scholar 

  14. J.-M. Hartmann, Tran. Ha, R. Armante, C. Boulet, A. Campargue, F. Forget, L. Gianfrani, I. Gordon, S. Guerlet, M. Gustafsson, J. T. Hodges, S. Kassi, D. Lisak, F. Thibault, and G. C. Toon, “Recent advances in collisional effects on spectra of molecular gases and their practical consequences,” J. Quant. Spectrosc. Radiat. Transfer 213, 178–227 (2018).

    Article  ADS  Google Scholar 

  15. S. D. Tvorogov, O. B. Rodimova, and L. I. Nesmelova, “Spectral line mixing and line wing shape: A critical review,” Atmos. Ocean. Opt. 3 (5), 428–442 (1990).

    Google Scholar 

  16. S. V. Ivanov and O. G. Buzykin, “Precision considerations of classical and semiclassical methods used in collision line broadening calculations: Different linear molecules perturbed by argon,” J. Quant. Spectrosc. Radiat. Transfer 119, 84–94 (2013).

    Article  ADS  Google Scholar 

  17. J.-M. Hartmann, C. Boulet, H. Tran, and M. T. Nguyen, “Molecular dynamics simulations for CO2 absorption spectra. I. Line broadening and the far wing of the ν3 infrared band,” J. Chem. Phys. 133 (14), 144313–1 (2010).

    Article  ADS  Google Scholar 

  18. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  19. E. P. Gordov and S. D. Tvorogov, Semiclassical Method for Quantum Theory Representation (Nauka, Novosibirsk, 1984) [in Russian]

    Google Scholar 

  20. J. M. Hutson, A. Ernesti, M. M. Law, C. F. Roche, and R. J. Wheatley, “The intermolecular potential energy surface for CO2–Ar: Fitting to high-resolution spectroscopy of Van Der Waals complexes and second virial coefficients,” J. Chem. Phys. 105 (20), 9130–9140 (1996).

    Article  ADS  Google Scholar 

  21. O. B. Rodimova, “Absorption coefficient in the 1–0 CO band wing broadened by helium,” Atmos. Ocean. Opt. 34 (5), 390–394 (2021).

    Article  Google Scholar 

  22. R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, “Temperature dependence of the absorption in the region beyond the 4.3 μm band of CO2. I: Pure CO2 case,” Appl. Opt. 24 (6), 897–906 (1985).

    Article  ADS  Google Scholar 

  23. J. Boissoles and D. Robert, “Collisionally induced population transfer effects in infrared absorption spectra. I. A line-by-line coupling theory from resonances to the far wing,” J. Chem. Phys. 89 (2), 625–634 (1988).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Rodimova.

Ethics declarations

The author of this work declares that she has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodimova, O.B. Calculation of the Absorption Coefficient of Ar-Broadened CO2 in the 4.3 μm Band Wing on the Basis of Asymptotic Line Wing Theory. Atmos Ocean Opt 37, 162–165 (2024). https://doi.org/10.1134/S1024856024700192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856024700192

Keywords:

Navigation