Skip to main content
Log in

Variability of the Ground Concentration of Particulate Matter PM1–PM10 in the Air Basin of the Southern Baikal Region

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The paper presents the results of studies of the content of particulate matter PM1–PM10 in the atmosphere of the western coast of Southern Baikal with high temporal resolution. It has been established that PM are emitted into the atmosphere of Southern Baikal from both anthropogenic and natural sources. In winter, the influence of thermal power facilities increases, as evidenced by synchronous increases in the concentrations of submicron aerosol PM1 and sulfur dioxide. In summer, remote forest fires make a significant contribution to atmospheric pollution with particulate matter. The relationship between the increase in the concentration of PM1 in the atmosphere in the region under study and mesometeorological features (temperature inversions and mesoscale transfer of plumes from large thermal power plants) has been revealed. Increases in PM1 concentrations in most cases occur during the night and morning hours, which is associated with a decrease in the thickness of the atmospheric boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. V. A. Southerland, M. Brauer, A. Mohegh, M. S. Hammer, A. van Donkelaar, R. V. Martin, J. S. Apte, and S. C. Anenberg, “Global urban temporal trends in fine particulate matter (PM2.5) and attributable health burdens: Estimates from global datasets,” Lancet Planet. Health 6 (2), e139–e146 (2022).

    Article  Google Scholar 

  2. A. I. Tiotiu, P. Novakova, D. Nedeva, H. J. Chong-Neto, S. Novakova, P. Steiropoulos, and K. Kowal, “Impact of air pollution on asthma outcomes,” Int. J. Environ. Res. Publ. Health 17 (17), 6212 (2020).

    Article  Google Scholar 

  3. T. Chang, J. Graff Zivin, T. Gross, and M. Neidell, “Particulate pollution and the productivity of pear packers,” Am. Econ. J.: Econ. Policy 8 (3), 141–169 (2016).

    Google Scholar 

  4. F. M. Aragon, J. J. Miranda, and P. Oliva, “Particulate matter and labor supply: The role of caregiving and non-linearities,” J. Environ. Econ. Manag. 86, 295–309 (2017).

    Article  Google Scholar 

  5. P. Kovadlo, A. Shikhovtsev, V. Lukin, and E. Kochugova, “Solar activity variations inducing effects of light scattering and refraction in the Earth’s atmosphere,” J. Atmos. Sol.-Terr. Phys. 179, 468–471 (2018).

    Article  ADS  Google Scholar 

  6. Y. Shi, J. Chen, D. Hu, L. Wang, X. Yang, and X. Wang, “Airborne submicron particulate (PM1) pollution in Shanghai, China: Chemical variability, formation/dissociation of associated semi-volatile components and the impacts on visibility,” Sci. Total Environ. 473, 99–206 (2014).

    ADS  Google Scholar 

  7. M. Gharibzadeh, A. A. Bidokhti, and K. Alam, “The interaction of ozone and aerosol in a semi-arid region in the Middle East: Ozone formation and radiative forcing implications,” Atmos. Environ. 245, 118015 (2021).

    Article  Google Scholar 

  8. J. Liu, Z. Guo, L. Zhou, L. Wang, J. Wang, Q. Yan, and D. Hua, “Inversion and analysis of aerosol optical properties and lidar ratios based on sky-radiometer and Raman lidar measurements in Xi’An, China,” Front. Environ. Sci. 10, 2082 (2022).

    Google Scholar 

  9. S. Pandya, T. R. Gadekallu, P. K. R. Maddikunta, and R. Sharma, “A study of the impacts of air pollution on the agricultural community and yield crops (Indian context),” Sustainability 14 (20), 13098 (2022).

    Article  Google Scholar 

  10. S. Hoffman and R. Jasinski, “The use of multilayer perceptrons to model PM2.5 concentrations at air monitoring stations in Poland,” Atmosphere 14, 96 (2023).

    Article  ADS  Google Scholar 

  11. Y. Li, Q. Chen, H. Zhao, L. Wang, and R. Tao, “Variations in PM10, PM2.5, and PM1.0 in an urban area of the Sichuan basin and their relation to meteorological factors,” Atmosphere 6 (1), 150–163 (2015).

    Article  ADS  Google Scholar 

  12. J. Wei, Z. Li, A. Lyapustin, L. Sun, Y. Peng, W. Xue, and M. Cribb, “Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications,” Remote Sens. Environ. 252, 112136 (2021).

    Article  Google Scholar 

  13. G. Kurnaz and A. S. Demir, “Prediction of SO2 and PM10 air pollutants using a deep learning-based recurrent neural network: Case of industrial city Sakarya,” Urban Climate 41, 101051 (2022).

    Article  Google Scholar 

  14. B. Eren, I. Aksangur, and C. Erden, “Predicting next hour fine particulate matter (PM2.5) in the Istanbul metropolitan city using deep learning algorithms with time windowing strategy,” Urban Clim. 48, 101418 (2023).

    Article  Google Scholar 

  15. Ivlev L.S. “Decay and generation of atmospheric aerosols and clouds and their ecological value,” Biosfera 5 (2), 182–210 (2013).

    Google Scholar 

  16. K. J. Mayer, X. Wang, M. V. Santander, B. A. Mitts, J. S. Sauer, C. M. Sultana, and K. A. Prather, “Secondary marine aerosol plays a dominant role over primary sea spray aerosol in cloud formation,” ACS Central Sci. 6 (12), 2259–2266 (2020).

    Article  Google Scholar 

  17. M. A. Bizin, S. A. Popova, and K. P. Kutsenogii, “The effect of forest fires on mass concentration, disperse and chemical composition of atmospheric aerosols on a regional scale,” Opt. Atmos. Okeana 26 (6), 484–489 (2013).

    Google Scholar 

  18. J. E. Soreide, E. V. Leu, J. Berge, M. Graeve, and S. Falk-Petersen, “Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic,” Glob. Change Biol. 16 (11), 3154–3163 (2010).

    Article  Google Scholar 

  19. O. B. Popovicheva, N. K. Shonija, N. Persiantseva, M. Timofeev, E. Diapouli, K. Eleftheriadis, L. Borgese, and X. A. Nguyen, “Aerosol pollutants during agricultural biomass burning: a case study in Ba Vi region in Hanoi, Vietnam,” Aerosol. Atmos. Chem. 17, 2762–2779 (2017).

    Google Scholar 

  20. X. Ji, R. Qin, C. Shi, L. Yang, L. Yao, S. Deng, and G. Jiang, “Dynamic landscape of multi-elements in PM2.5 revealed by real-time analysis,” Environ. Int. 170, 107607 (2022).

    Article  Google Scholar 

  21. N. Amil, M. T. Latif, M. F. Khan, and M. Mohamad, “Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment,” Atmos. Chem. Phys. 16 (8), 5357–5381 (2016).

    Article  ADS  Google Scholar 

  22. A. Y. Shikhovtsev, P. G. Kovadlo, A. A. Lezhenin, O. A. Korobov, A. V. Kiselev, I. V. Russkikh, D. Y. Kolobov, and M. Y. Shikhovtsev, “Influence of atmospheric flow structure on optical turbulence characteristics,” Appl. Sci. 13 (3), 1282 (2023).

    Article  Google Scholar 

  23. V. Obolkin, E. Molozhnikova, M. Shikhovtsev, O. Netsvetaeva, and T. Khodzher, “Sulfur and nitrogen oxides in the atmosphere of Lake Baikal: Sources, automatic monitoring, and environmental risks,” Atmosphere 12 (10), 1–10 (2021).

    Article  Google Scholar 

  24. I. Marinaite, I. Penner, E. Molozhnikova, M. Shikhovtsev, and T. Khodzher, “Polycyclic aromatic hydrocarbons in the atmosphere of the Southern Baikal region (Russia): Sources and relationship with meteorological conditions,” Atmosphere 13 (3), 420 (2022).

    Article  ADS  Google Scholar 

  25. M. Yu. Shikhovtsev and Y. V. Molozhnikova, “Inter-annual dynamics of regional and transboundary transport of air masses of the Baikal Region for 2010–2018,” Proc. SPIE—Int. Soc. Opt. Eng. 11560, 1–8 (2020).

  26. S. Tiwari, D. S. Bisht, A. K. Srivastava, A. S. Pipal, A. Taneja, M. K. Srivastava, and S. D. Attri, “Variability in atmospheric particulates and meteorological effects on their mass concentrations over Delhi, India,” Atmos. Res. 145, 45–56 (2014).

    Article  Google Scholar 

  27. M. Y. Shikhovtsev and Y. V. Molozhnikova, “Inter-annual dynamics of regional and transboundary transport of air masses of the Baikal Region for 2010–2018,” Proc. SPIE—Int. Soc. Opt. Eng. 11560, 1318–1324 (2020).

  28. Y. V. Molozhnikova, M. Y. Shikhovtsev, A. K. Popova, V. A. Obolkin, and T. V. Khodzher, “Comparative analysis of satellite and continuous surface measurements of gas impurities in the air basin at the Listvyanka station, Lake Baikal,” Proc. SPIE—Int. Soc. Opt. Eng. 12341, 1048–1052 (2022).

  29. Z. Liu, B. Hu, L. Wang, F. Wu, W. Gao, and Y. Wang, “Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: Analyses from a 9-year study // Environ. Sci. Pollut. Res. 22, 627–642 (2015).

    Article  Google Scholar 

  30. I. I. Marinaite, V. L. Potyomkin, E. V. Molozhnikova, I. E. Penner, M. Yu. Shikhovtsev, O. N. Izosimova, and T. V. Khodzher, “Polycyclic aromatic hydrocarbons and PM10 solid particles above the water area of Lake Baikal in the summer of 2020,” Proc. SPIE—Int. Soc. Opt. Eng. 11916, 119161 (2021).

  31. M. Zhang, J. Jia, B. Wang, W. Zhang, Ch. Gu, X. Zhang, and Yu. Zhao, “Source apportionment of fine particulate matter during the day and night in Lanzhou, NW China,” Int. J. Environ. Res. Public Health 19 (12), 7091 (2022).

    Article  Google Scholar 

  32. E. N. Kirillova, A. Andersson, J. Han, M. Lee, and O. Gustafsson, “Sources and light absorption of water-soluble organic carbon aerosols in the outflow from Northern China,” Atmos. Chem. Phys. 14 (3), 1413–1422 (2014).

    Article  ADS  Google Scholar 

  33. G. Bagtasa, M. G. Cayetano, and C. S. Yuan, “Seasonal variation and chemical characterization of PM2.5 in Northwestern Philippines,” Atmos. Chem. Phys. 18 (7), 4965–4980 (2018).

    Article  ADS  Google Scholar 

  34. M. Amonov and B. Nishonov, “Seasonal variability of PM concentration in Tashkent,” IOP Conf. Series: Mater. Sci. Eng. 869 (2), 022030 (2020).

    Article  Google Scholar 

  35. M. A. Rouf, M. Nasiruddin, A. Hossain, and M. Islam, “Trend of particulate matter PM2.5 and PM10 in Dhaka City,” Bangladesh J. Sci. Industrial Res. 46 (3), 389–398 (2011).

    Article  Google Scholar 

  36. F. Yousefian, S. Faridi, F. Azimi, M. Aghaei, M. Shamsipour, K. Yaghmaeian, and Sadegh M. Hassanvand, “Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012–2017,” Sci. Report 10 (1), 1–11 (2020).

    Article  Google Scholar 

  37. D. S. Bisht, A. K. Srivastava, A. S. Pipal, M. K. Srivastava, A. K. Pandey, S. Tiwari, and G. Pandithurai, “Aerosol characteristics at a rural station in southern peninsular India during CAIPEEX-IGOC: Physical and chemical properties,” Environ. Sci. Pollut. Res. 22, 5293–5304 (2015).

    Article  Google Scholar 

  38. V. A. Obolkin, V. L. Potemkin, V. L. Makukhin, Y. V. Chipanina, and I. I. Marinayte, “Low-level atmospheric jets as main mechanism of long-range transport of power plant plumes in the Lake Baikal region,” Int. J. Environ. Stud. 71 (3) (2014).

  39. A. Shikhovtsev, P. Kovadlo, V. Lukin, V. Nosov, A. Kiselev, D. Kolobov, E. Kopylov, M. Shikhovtsev, and F. Avdeev, “Statistics of the optical turbulence from the micrometeorological measurements at the Baykal Astrophysical Observatory site,” Atmosphere 10, 661 (2019).

    Article  ADS  Google Scholar 

  40. A. Y. Shikhovtsev, A. V. Kiselev, P. G. Kovadlo, D. Y. Kolobov, V. P. Lukin, and V. E. Tomin, “Method for estimating the altitudes of atmospheric layers with strong turbulence,” Atmos. Ocean. Opt. 33 (3), 295–301 (2020).

    Article  Google Scholar 

  41. A. Yu. Shikhovtsev, “Method of determining optical turbulence characteristics by the line of sight of an astronomical telescope,” Atmos. Ocean. Opt. 35 (3), 303–309 (2022).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (Limnological Institute, Siberian Branch, Russian Academy of Sciences, no. 0279-2021-0014 “Study of the role of atmospheric fallout on water and terrestrial ecosystems of the Baikal basin, identification of atmospheric pollution sources”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Yu. Shikhovtsev, V. A. Obolkin, T. V. Khodzher or Ye. V. Molozhnikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shikhovtsev, M.Y., Obolkin, V.A., Khodzher, T.V. et al. Variability of the Ground Concentration of Particulate Matter PM1–PM10 in the Air Basin of the Southern Baikal Region. Atmos Ocean Opt 36, 655–662 (2023). https://doi.org/10.1134/S1024856023060192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023060192

Keywords:

Navigation