Skip to main content
Log in

Particle Density Values for Numerical Estimation of Mass Concentration of Near-Surface Submicron and Micron Aerosol

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The results of experimental determination of near-surface aerosol density for particles of different composition and size have been published over many years. Based on the generalization of these data, as well as the results of our own field observations of microphysical characteristics and composition of Moscow aerosol, an algorithm and parameters for numerical estimation of mass concentration of submicron and micron urban aerosol are suggested. Using this algorithm, on the basis of experimental data on the size distribution function of aerosol particles in the diameter range 0.3–10 μm obtained during regular observations at IAP RAS in Moscow in 2020–2022, the mass concentration of near-surface aerosol of various fractions was calculated. A comparative analysis of the results of such an assessment and the data of synchronous measurements of mass concentration of aerosol particles using a portable aerosol spectrometer GRIMM 1.108 over the past two years has shown a good correspondence between the calculated and measured values. Density values for four ranges of aerosol particle sizes are selected for more correct numerical estimation of the mass concentration of urban aerosol of fractions PM2.5 and PM10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed. (Wiley, New York, 2006).

    Google Scholar 

  2. K. Ya. Kondrat’ev, L. S. Ivlev, and V. F. Krapivin, Atmospheric Aerosols: Properties, Generation, and Effects. From Nano- to Global Scales (VVM, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  3. Particulate matter (PM 2.5 and PM 10 ), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Executive summary (WMO, Geneva, 2021). https://apps.who.int/ iris/bitstream/handle/10665/345334/9789240035409-rus.pdf?sequence=9. Cited February 7, 2023.

  4. www.eea.europa.eu/themes/air/air-quality-concentrations/air-quality-standards. Cited February 7, 2023.

  5. SanPiN 1.2.3685-21. https://docs.cntd.ru/document/ 573500115. Cited February 7, 2023.

  6. L. Morawska, G. Johnson, Z. Ristovski, and V. Agranovski, “Relation between particle mass and number for submicrometer airborne particles,” Atmos. Environ. 33, 1983–1990 (1999).

    Article  ADS  Google Scholar 

  7. D. P. Gubanova, A. A. Vinogradova, A. I. Skorokhod, and M. A. Iordanskii, “Abnormal aerosol air pollution in Moscow near the local anthropogenic source in July 2021,” Gidrometeorologicheskie Issledovaniya Prognozy, No. 4, 134–148 (2021). https://doi.org/10.37162/2618-9631-2021-4-134-148

    Article  Google Scholar 

  8. I. N. Tang and H. R. Munkelwitz, “Water activities, densities, and refractive-indexes of aqueous sulphates and sodium-nitrate droplets of atmospheric importance,” J. Geophys. Res. 99, 18 801–18 808 (1994).

    Article  ADS  Google Scholar 

  9. P. A. Baron and K. Willeke, “Gas and particle motion,” in: Aerosol Measurement: Principles, Techniques, and Applications (Wiley, New York, 2001), pp. 61–97.

    Google Scholar 

  10. B. Sarangi, S. G. Aggarwal, D. Sinha, and P. K. Gupta, “Aerosol effective density measurement using scanning mobility particle sizer and quartz crystal microbalance with the estimation of involved uncertainty,” Atmos. Meas. Tech. 9, 859–875 (2016).

    Article  Google Scholar 

  11. P. F. DeCarlo, J. G. Slowik, D. R. Worsnop, P. Davidovits, and J. L. Jimenez, “Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory,” Aerosol Sci. Technol. 38 (12), 1185–1205 (2004).

    Article  ADS  Google Scholar 

  12. M. Pitz, O. Schmid, J. Heinrich, W. Birmili, J. Maguhn, R. Zimmermann, H.-E. Wichmann, A. Peters, and J. Cyrys, “Seasonal and diurnal variation of PM2.5 apparent particle density in urban air in Augsburg, Germany,” Environ. Sci. Technol. 42 (14), 5087–5093 (2008).

    Article  ADS  Google Scholar 

  13. M. Pitz, J. Cyrys, E. Karg, A. Wiedensohler, H.‑E. Wichmann, and J. Heinrich, “Variability of apparent particle density of an urban aerosol,” Environ. Sci. Technol. 37 (19), 4336–42 (2003).

    Article  ADS  Google Scholar 

  14. G. Hanel, “The real part of the mean complex refractive index and the mean density of samples of atmospheric aerosol particles,” Tellus 20 (3), 371–379 (1968).

    Article  ADS  Google Scholar 

  15. G. Hanel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys., 73–188 (1976).

  16. G. Hanel and J. Thudium, “Mean bulk densities of samples of dry atmospheric aerosol particles: A summary of measured data,” Pure Appl. Geophys. PAGEO-PH 115 (4), 799–803 (1977). https://doi.org/10.1007/bf00881211

    Article  ADS  Google Scholar 

  17. J. Thudium, “A gas pycnometer (microliter) for determining the mean density of atmospheric aerosol particles,” J. Aerosol Sci. 7 (2), 167–173 (1976).

    Article  ADS  Google Scholar 

  18. B. Schleicher, S. Kunzel, and H. Burtscher, “In situ measurement of size and density of submicron aerosol particles,” J. Appl. Phys. 78, 4416 (1995).

    Article  ADS  Google Scholar 

  19. P. H. McMurry, X. Wang, K. Park, and K. Ehara, “The relationship between mass and mobility for atmospheric particles: A new technique for measuring particle density,” Aerosol Sci. Technol. 36 (2), 227–238 (2002).

    Article  ADS  Google Scholar 

  20. K. Ehara and S. Shin, “Measurement of density distribution of aerosol particles by successive classification of particles according to their mass and diameter,” J. Aerosol Sci. 29 (1), 19–20 (1998).

    Article  ADS  Google Scholar 

  21. E. P. Emets, V. A. Kascheev, and P. P. Poluektov, “A new technique for the determination of the density of airborne particulate matter,” J. Aerosol Sci. 23 (1), 27–35 (1992).

    Article  ADS  Google Scholar 

  22. M. Hu, J. Peng, K. Sun, D. Yue, S. Guo, A. Wiedensohler, and Z. Wu, “Estimation of size-resolved ambient particle density based on the measurement of aerosol number, mass, and chemical size distributions in the winter in Beijing, ” Environ. Sci. Technol. 46, 9941–9947 (2012).

    Article  ADS  Google Scholar 

  23. M. Geller, S. Biswas, and C. Sioutas, “Determination of particle effective density in urban environments with a differential mobility analyzer and aerosol particle mass analyzer,” Aerosol Sci. Technol. 40 (9), 709–723 (2006).

    Article  ADS  Google Scholar 

  24. A. Charvet, S. Bau, Coy N. E. Paez, D. Bemer, and D. Thomas, “Characterizing the effective density and primary particle diameter of airborne nanoparticles produced by spark discharge using mobility and mass measurements (Tandem DMA/APM),” J. Nanopart. Res. 16, 2418 (2014).

    Article  ADS  Google Scholar 

  25. Z. Yin, X. Ye, S. Jiang, Y. Tao, Y. Shi, X. Yang, and J. Chen, “Size-resolved effective density of urban aerosols in Shanghai,” Atmos. Environ. 100, 133–140 (2015).

    Article  ADS  Google Scholar 

  26. A. Khlystov, C. Stanier, and S. N. Pandis, “An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol,” Aerosol Sci. Technol. 38 (2004).

  27. E. Kassianov, J. Barnard, M. Pekour, L. K. Berg, J. Shilling, C. Flynn, F. Mei, and A. Jefferson, “Simultaneous retrieval of effective refractive index and density from size distribution and light-scattering data: Weakly absorbing aerosol,” Atmos. Meas. Tech. 7, 3247–3261 (2014).

    Article  Google Scholar 

  28. M. T. Spencer, L. G. Shields, and K. A. Prather, “Simultaneous measurement of the effective density and chemical composition of ambient aerosol particles,” Environ. Sci. Technol. 41 (4), 1303–1309 (2007).

    Article  ADS  Google Scholar 

  29. S. Zhao, Y. Yu, D. Yin, and J. He, “Effective density of submicron aerosol particles in a typical Valley City, Western China,” Aerosol. Air Qual. Res. 17, 1–13 (2017).

    Article  Google Scholar 

  30. J. C. Cabada, S. Rees, S. Takahama, A. Khlystov, S. N. Pandis, C. I. Davidson, and A. L. Robinson, “Mass size distributions and size resolved chemical composition of fine particulate matter at the pittsburgh supersite,” Atmos. Environ. 38, 3127–3141 (2004).

    Article  ADS  Google Scholar 

  31. M. M. Maricq and N. Xu, “The effective density and fractal dimension of soot particles from premixed flames and motor vehicle exhaust,” J. Aerosol Sci. 35 (10), 1251–1274 (2004).

    Article  ADS  Google Scholar 

  32. S. Bau, D. Bemer, F. Grippari, J.-C. Appert-Collin, and D. Thomas, “Determining the effective density of airborne nanoparticles using multiple charging correction in a tandem DMA/ELPI setup,” J. Nanopart. Res. 16 (10) (2014). https://doi.org/10.1007/s11051-014-2629-2

  33. J. Ristimaki, A. Virtanen, M. Marjamaki, A. Rostedt, and J. Keskinen, “On-line measurement of size distribution and effective density of submicron aerosol particles,” J. Aerosol Sci. 33 (11), 1541–1557 (2002).

    Article  ADS  Google Scholar 

  34. A. Virtanen, J. Ristimaki, and J. Keskinen, “Method for measuring effective density and fractal dimension of aerosol agglomerates,” Aerosol Sci. Technol. 38 (5), 437–446 (2004).

    Article  ADS  Google Scholar 

  35. J. L. Hand and S. M. Kreidenweis, “A new method for retrieving particle refractive index and effective density from aerosol size distribution data,” Aerosol Sci. Technol. 36 (10), 1012–1026 (2002).

    Article  ADS  Google Scholar 

  36. E. Karg, “The density of ambient particles from combined DMA and APS data,” J. Aerosol Sci. 31, 759–760 (2000).

    Article  ADS  Google Scholar 

  37. J. Kannosto, A. Virtanen, M. Lemmetty, J. M. Makela, J. Keskinen, H. Junninen, T. Hussein, P. Aalto, and M. Kulmala, “Mode resolved density of atmospheric aerosol particles,” Atmos. Chem. Phys. 8, 5327–5337 (2008).

    Article  ADS  Google Scholar 

  38. Z. Li, Y. Wei, Y. XieY. Zhang, L. Li, K. Li, Y. Ma, X. Sun, W. Zhao, and X. Gu, “Retrieval of atmospheric fine particulate density based on merging particle size distribution measurements: Multi-instrument observation and quality control at Shouxian,” J. Geophys. Res.: Atmos. 123 (12), 474–488 (2018).

    Google Scholar 

  39. B. J. Sumlin, C. R. Oxford, B. Seo, R. R. Pattison, B. J. Williams, and R. K. Chakrabarty, “Density and homogeneous internal composition of primary brown carbon aerosol,” Environ. Sci. Technol. 52 (7), 3982–3989 (2018).

    Article  ADS  Google Scholar 

  40. J. S. Olfert, J. P. R. Symonds, and N. Collings, “The effective density and fractal dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst,” J. Aerosol Sci. 38 (1), 69–82 (2007).

    Article  ADS  Google Scholar 

  41. J. Rissler, E. Z. Nordin, A. C. Eriksson, P. T. Nilsson, M. Frosch, M. K. Sporre, A. Wierzbicka, B. Svenningsson, J. Londahl, M. E. Messing, S. Sjogren, J. G. Hemmingsen, S. Loft, J. H. Pagels, and E. Swietlicki, “Effective density and mixing state of aerosol particles in a near-traffic urban environment,” Environ. Sci. Technol. 48 (11), 6300–6308 (2014).

    Article  ADS  Google Scholar 

  42. S. W. Stein, B. J. Turpin, X. Cai, P.-F. Huang, and P. H. Mcmurry, “Measurements of relative humidity-dependent bounce and density for atmospheric particles using the DMA-impactor technique,” Atmos. Environ. 28 (10), 1739–1746 (1994).

    Article  ADS  Google Scholar 

  43. Q. G. J. Malloy, S. Nakao, L. Qi, R. Austin, C. Stothers, H. Hagino, and D. R. Cocker, “Real-time aerosol density determination utilizing a modified scanning mobility particle sizer—aerosol particle mass analyzer system,” Aerosol Sci. Technol. 43 (7), 673–678 (2009).

    Article  ADS  Google Scholar 

  44. P. V. Joshi, “Density of atmospheric aerosol particles,” in Atmospheric Aerosols and Nucleation. Lecture Notes in Physics, Ed. by P.E. Wagner and G. Vali (Springer, Berlin, Heidelberg, 1988), no. 309.

  45. K. Park, F. Cao, D. B. Kittelson, and P. H. McMurry, “Relationship between particle mass and mobility for diesel exhaust particles,” Environ. Sci. Technol. 37, 577–583 (2003).

    Article  ADS  Google Scholar 

  46. V. I. Kudryashov, “Analysis of the elemental composition of atmospheric aerosols using physical methods,” in Problems of Atmospheric Physics. Is. 20. Physics and Chemistry of Atmospheric Aerosols (SPbSU, St. Petersburg, 1997), pp. 97–130 [in Russian].

  47. V. K. Karandashev, A. N. Turanov, T. A. Orlova, A. E. Lezhnev, S. V. Nosenko, N. I. Zolotareva, and I. R. Moskvina, “Mass spectrometry with inductive coupled plasma in the elemental composition of environmental objects,” Zavodskaya Laboratoriya. Diagnostika Materialov 73 (1), 12–22 (2007).

    Google Scholar 

  48. Kh. Erkhardt, X-Ray Analysis. Use in Industrial Laboratories (Metallurgiya, Moscow, 1985) [in Russian].

    Google Scholar 

  49. E. Kang, I. Park, Y. J. Lee, and M. Lee, “Characterization of atmospheric particles in Seoul, Korea using SEM-EDX,” J. Nanosci. Nanotechnol., No. 7, 6016–6021 (2012).

  50. P. Sielicki, H. Janik, A. Guzman, and J. Namiesnik, “The progress in electron microscopy studies of particulate matters to be used as a standard monitoring method for air,” CRC Crit. Rev. Anal. Chem. 41, 314–334 (2011).

    Article  Google Scholar 

  51. D. P. Gubanova, A. A. Vinogradova, A. I. Skorokhod, and M. A. Iordanskii, “Time variations in the composition of atmospheric aerosol in Moscow in spring 2020,” Izv., Atmos. Ocean. Phys. 57 (3), 297–309 (2021).

    Article  Google Scholar 

  52. A. A. Vinogradova, D. P. Gubanova, M. A. Iordanskii, and A. I. Skorokhod, “Effect of meteorological conditions and long-range air mass transport on surface aerosol composition in winter Moscow,” Atmos. Ocean. Opt. 35 (6), 758–768 (2022).

    Article  Google Scholar 

  53. D. P. Gubanova, A. A. Vinogradova, M. A. Iordanskii, and A. I. Skorokhod, “Variability of near-surface aerosol composition in Moscow in 2020–2021: Episodes of extreme air pollution of different genesis,” Atmosphere 13 (4), 574–599 (2022).

    Article  ADS  Google Scholar 

  54. http://rp5.ru. Cited February 7, 2023.

  55. http://www.windy.com/ru. Cited February 7, 2023.

  56. WeatherArchive. https://weatherarchive.ru/Pogoda/Moscow. Cited February 7, 2023.

  57. A. F. Stein, R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, “NOAA’s HYSPLIT atmospheric transport and dispersion modeling system,” Bull. Am. Meteor. Soc. 96, 2059–2077 (2015).

    Article  ADS  Google Scholar 

  58. www.arl.noaa.gov. Cited February 7, 2023.

  59. M. Ebert, S. Weinbruch, P. Hoffmann, and H. M. Ortner, “The chemical composition and complex refractive index of rural and urban influenced aerosols determined by individual particle analysis,” Atm. Environ. 38 (38), 6531–6545 (2004).

    Article  Google Scholar 

  60. D. P. Gubanova, A. A. Vinogradova, and N. V. Sadovskaya, “Brochosomes and other bioaerosols in the surface layer of the atmosphere of Moscow metropolis,” Atmosphere 14 (3), 504 (2023).

    Article  ADS  Google Scholar 

  61. G. Xu and X. Shi, “Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review,” Resources, Conservation Recycling 136, 95–109 (2018).

    Article  Google Scholar 

  62. http://thermalinfo.ru/svojstva-materialov/mineraly/plotnost-grunta. Cited February 7, 2023.

  63. www.center-pss.ru/st/st183.htm. Cited February 7, 2023.

  64. T. M. Peters, D. Ott, and P. T. O' Shaughnessy, “Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles,” Ann. Occup. Hyg. 50 (8), 843–850 (2006).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 23-27-00063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Gubanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubanova, D.P., Iordanskii, M.A., Vinogradova, A.A. et al. Particle Density Values for Numerical Estimation of Mass Concentration of Near-Surface Submicron and Micron Aerosol. Atmos Ocean Opt 36, 670–684 (2023). https://doi.org/10.1134/S102485602306009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602306009X

Keywords:

Navigation