Skip to main content
Log in

Modernization of the LOZA-A2 Lidar for Simultaneous Measurements of Vibrational-Rotational and Purely Rotational Raman Spectra

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The results of the modernization of the mobile aerosol Raman lidar LOZA-A2 are presented. Lidar measures purely rotational Raman scattering signals simultaneously with measurements of the vibrational component of spontaneous Raman scattering of lidar signals. The technique for interpreting Raman lidar sensing data is considered. Data are obtained from simultaneous measurements of vibrational–rotational and purely rotational Raman scattering in atmospheric sensing over the Lake Baikal. The results are presented from retrieving the vertical profiles of the optical characteristics of the atmosphere at a wavelength of 532 nm using these data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. K. Ya. Kondratyev, ”From nano- to global scales: properties, processes of formation, and aftereffects of atmospheric aerosol impacts. 7. Aerosol radiative forcing and climate,” Atmos. Ocean. Opt. 18 (7), 479–496 (2005).

    Google Scholar 

  2. B. W. Zhang, “The effect of aerosols to climate change and society,” J. Geosci. Environ. Protect, No. 8, 55–78 (2020).

    Google Scholar 

  3. Intergovernmental Panel on Climate Change. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2014). https://doi.org/10.1017/CBO9781107415324

    Book  Google Scholar 

  4. K. Ya. Kondrayev, “Aerosol and climate studies: current state and prospects 1. Aerosol formation, its properties, and their transformations,” Atmos. Ocean. Opt. 19 (1), 1–16 (2006).

    Google Scholar 

  5. A. Ansmann and D. Muller, Lidar and Atmospheric Aerosol Particles, Ed. by C. Weitkamp (Springer, New York, 2005).

    Book  Google Scholar 

  6. V. Matthias, D. Balis, J. Bosenberg, R. Eixmann, M. Iarlori, L. Komguem, I. Mattis, A. Papayannis, G. Pappalardo, M. R. Perrone, and X. Wang, “Vertical aerosol distribution over Europe: Statistical analysis of raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations,” J. Geophys. Res. 109 (D18), 1–12 (2004).

    Google Scholar 

  7. D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE—Int. Soc. Opt. Eng., No. 4893 (2003).

  8. I. Uno, K. Eguchi, K. Yumimoto, T. Takemura, A. Shimizu, M. Uematsu, Zh. Liu, Z. Wang, Yu. Hara, and N. Sugimoto, “Asian dust transported one full circuit around the globe,” Nature Geosci. 2, 557–560 (2009).

    Article  ADS  Google Scholar 

  9. P. R. Colarco, M. R. Schoeberl, B. G. Doddridge, L. T. Marufu, O. Torres, and E. J. Welton, “Transport of smoke from Canadian forest fires to the surface near Washington, D.C.: Injection height, entrainment, and optical properties,” J. Geophys. Res. 109, D06203 (2004). https://doi.org/10.1029/2003JD004248

    Article  ADS  Google Scholar 

  10. Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational raman lidar,” Appl. Opt. 22 (19), 2984–2990 (1983).

    Article  ADS  Google Scholar 

  11. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).

    Article  ADS  Google Scholar 

  12. F. G. Fernald, “Analysis of atmospheric lidar observations: Some comments,” Appl. Opt. 24, 1609–1613 (1984).

    Google Scholar 

  13. C. Böckmann, U. Wandinger, A. Ansmann, J. Bosenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, A. Hagard, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larcheveque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadembosch, J. A. Rodriguez, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET Project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43, 977–989 (2004).

    Article  ADS  Google Scholar 

  14. Y. Sasano, E. V. Browell, and S. Ismail, “Error caused by using a constant extinction backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985).

    Article  ADS  Google Scholar 

  15. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).

    Article  ADS  Google Scholar 

  16. V. Shcherbakov, “Regularized algorithm for Raman lidar data processing,” Appl. Opt. 46, 4879–4889 (2007).

    Article  ADS  Google Scholar 

  17. S. Nasonov, Yu. Balin, M. Klemasheva, G. Kokhanenko, M. Novoselov, I. Penner, S. Samoilova, and T. Khodzher, “Mobile aerosol Raman polarizing lidar LOSA-A2 for atmospheric sounding,” Atmosphere 11 (1032), 1–12 (2020).

    Article  Google Scholar 

  18. www.iao.ru/ru/structure/juc. Cited November, 16, 2021.

  19. I. Veselovskii, D. N. Whiteman, M. Korenskiy, A. Suvorina, and D. Perez-Ramirez, “Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction,” Atmos. Meas. Tech. 8, 4111–4122 (2015).

    Article  Google Scholar 

  20. O. Popovicheva, E. Molozhnikova, S. Nasonov, V. Potemkin, I. Penner, M. Klemasheva, I. Marinaite, L. Golobokova, S. Vratolis, K. Eleftheriadis, and T. Khodzer, “Industrial and wildfire aerosol pollution over world heritage Lake Baikal,” J. Environ. Sci. (2021). https://doi.org/10.1016/j.jes.2021.01.011

  21. T. V. Khodzher, G. S. Zhamsueva, A. S. Zayakhanov, A. L. Dement’eva, V. V. Tsydypov, Yu. S. Balin, I. E. Penner, G. P. Kokhanenko, S. V. Nasonov, M. G. Klemasheva, L. P. Golobokova, and V. L. Potemkin, “Ship-based studies of aerosol-gas admixtures over Lake Baikal basin in summer 2018,” Atmos. Ocean. Opt. 32 (4), 434–441 (2019). https://doi.org/10.1134/S1024856019020192

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (grant no. 075-15-2020-787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Balin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balin, Y.S., Klemasheva, M.G., Kokhanenko, G.P. et al. Modernization of the LOZA-A2 Lidar for Simultaneous Measurements of Vibrational-Rotational and Purely Rotational Raman Spectra. Atmos Ocean Opt 36, 810–815 (2023). https://doi.org/10.1134/S1024856023060064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023060064

Keywords:

Navigation