Skip to main content
Log in

Impact of Updating Information on the Atmospheric Gas Absorption Line Parameters on the Results of Simulations of IR Radiative Fluxes in the Atmosphere

  • OPTICAL MODELS AND DATABASES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The impact of uncertainties of the atmospheric gas absorption line parameters in the modern spectroscopic databases on the simulation of longwave fluxes in the atmosphere is estimated. The mass calculations of downward and upward IR fluxes are carried out for meteorological conditions observed in summer months in the Lower Volga Region and winter months in Novosibirsk and for average zonal meteorological models. The radiative fluxes and cooling rates at different levels of the atmosphere calculated using new versions of HITRAN and GEISA spectroscopic databases and their previous versions are compared. It is shown that the difference in absorption line parameters in the spectroscopic databases leads to an error less than 0.7 W/m2 (0.3%) in the simulated integral fluxes in the 0–3000 cm−1 region, at that the relative differences in the spectral fluxes calculated with moderate spectral resolution (20 cm−1) are up to 10%. The atmospheric gases and spectral intervals contributing more to the errors in the IR flux simulations due to uncertainties of initial spectroscopic information are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. http://www.ndsc.ncep.noaa.gov. Cited March 17, 2023.

  2. Y. Timofeyev, Y. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, and H. Imhasin, “Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg Russia,” J. Mol. Spectrosc. 323, 2–14 (2016).

    Article  ADS  Google Scholar 

  3. Zhu Mingwei, Zhang Feng, Li Wenwen, Wu You, and Xu Na, “The impact of various HITRAN molecular spectroscopic databases on infrared radiative transfer simulation,” J. Quant. Spectrosc. Radiat. Transfer 234, 55–63 (2019).

    Article  ADS  Google Scholar 

  4. G. E. Kolokutin and B. A. Fomin, “New versions of spectroscopic databases and remote sensing of the Earth using high-resolution IR spectroscopy,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 11 (3), 278–287 (2014).

    Google Scholar 

  5. K. M. Firsov, T. Yu. Chesnokova, E. V. Bobrov, and I. I. Klitochenko, “Estimation of uncertainties in the longwave radiative fluxes simulation due to spectroscopic errors,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 929205–1 (2014).

  6. T. Yu. Chesnokova, A. V. Chentsov, and K. M. Firsov, “Impact of spectroscopic information on total column water vapor retrieval in the near-infrared spectral region,” J. Appl. Remote Sens. 14 (3), 034510 (2020).

    Article  ADS  Google Scholar 

  7. K. M. Firsov, T. Yu. Chesnokova, and A. A. Razmolov, “Impact of water vapor continuum absorption on CO2 radiative forcing in the atmosphere in the lower Volga region,” Atmos. Ocean. Opt. 36 (2), 162–168 (2023).

    Article  Google Scholar 

  8. I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcislo, A. A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V. I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Cane, A. G. Csaszar, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, V.-M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N. N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu. Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H. S. P. Muller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tobias, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, Auwera J. Vander, I. A. Vasilenko, A. A. Vigasin, G. L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, and S. N. Yurchenko, “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectros. Radiat. Transfer 277, 107949 (2022).

    Article  Google Scholar 

  9. T. Delahaye, R. Armante, N. A. Scott, N. Jacquinet-Husson, A. Chedin, L. Crepeau, C. Crevoisier, V. Douet, A. Perrin, A. Barbe, V. Boudon, A. Campargue, L. H. Coudert, V. Ebert, J.-M. Flaud, R. R. Gamache, D. Jacquemart, A. Jolly, Tchana F. Kwabia, A. Kyuberis, G. Li, O. M. Lyulin, L. Manceron, S. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. Nikitin, V. I. Perevalov, C. Richard, E. Starikova, S. A. Tashkun, Vl. G. Tyuterev, Auwera J. Vander, B. Vispoel, A. Yachmenev, and S. Yurchenko, “The 2020 edition of the GEISA spectroscopic database,” J. Mol. Spectrosc. 380, 111510 (2021).

    Article  Google Scholar 

  10. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and Auwera J. Vander, “The HITRAN2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).

    Article  ADS  Google Scholar 

  11. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrink, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    Article  ADS  Google Scholar 

  12. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tana, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, Auwera J. Vander, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).

    Article  ADS  Google Scholar 

  13. N. Jacquinet-Husson, R. Armante, N. A. Scott, A. Chedin, L. Crepeau, C. Boutammine, A. Bouhdaoui, C. Crevoisier, V. Capelle, C. Boonne, N. Poulet-Crovisier, A. Barbe, BennerD. Chris, V. Boudon, L. R. Brown, J. Buldyreva, A. Campargue, L. H. Coudert, V. M. Devi, M. J. Down, B. J. Drouin, A. Fayt, C. Fittschen, J.-M. Flaud, R. R. Gamache, J. J. Harrison, C. Hill, O. Hodnebrog, S.-M. Hut, D. Jacquemart, A. Jolly, E. Jimenez, N. N. Lavrentieva, A.‑W. Liu, L. Lodi, O. M. Lyulin, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. Nikitin, C. J. Nielsen, J. Orphal, V. I. Perevalov, A. Perrin, E. Polovtseva, A. Predoi-Cross, M. Rotger, A. A. Ruth, S. S. Yu, K. Sung, S. A. Tashkun, J. Tennyson, Vl. G. Tyuterev, Auwera J. Vander, B. A. Voronin, and A. Makie, “The 2015 Edition of the GEISA spectroscopic database,” J. Mol. Spectrosc. 327, 31–72 (2016).

    Article  ADS  Google Scholar 

  14. A. A. Mitsel’, I. V. Ptashnik, K. M. Firsov, and B. A. Fomin, “Efficient technique for line-by-line calculating the transmittance of the absorbing atmosphere,” Atmos. Ocean. Opt. 8 (10), 1547–1551 (1995).

    Google Scholar 

  15. K. M. Firsov, T. Yu. Chesnokova, and E. V. Bobrov, “The role of the water vapor continuum absorption in near ground long-wave radiation processes of the lower Volga Region,” Atmos. Ocean. Opt. 28 (1), 1–8 (2015).

    Article  Google Scholar 

  16. A. A. Lacis and V. Oinas, “A description of the K-distribution methods for modelling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres,” J. Geophys. Res. 96 (D5), 9027–9063 (1991).

    Article  ADS  Google Scholar 

  17. E. J. Mlawer, V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, and D. C. Tobin, “Development and recent evaluation of the MT_CKD model of continuum absorption,” Phill. Trans. R. Soc. A 370, 2520–2556 (2012).

    Article  ADS  Google Scholar 

  18. K. M. Firsov and T. Yu. Chesnokova, “Influence of variations in the CH4 and N2O concentration on long-wave radiative fluxes in the Earth’s atmosphere,” Atmos. Ocean. Opt. 12 (9), 758–763 (1999).

    Google Scholar 

  19. R. Goody, R. West, L. Chen, and D. Crisp, “The correlated-k method for radiation calculations in nonhomogeneous atmospheres,” J. Quant. Spectrosc. Radiat. Transfer 42 (6), 539–550 (1989).

    Article  ADS  Google Scholar 

  20. J. J. Morcrette and Y. Fouquart, “On systematic errors in parameterized calculation of longwave radiation transfer,” J. Q. R. Meteorol. Soc. 111, 691–708 (1985).

    Article  ADS  Google Scholar 

  21. G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle, AFGL Atmospheric Constituent Profiles (0–120  km). Air Force Geophysics Laboratory. AFGL-TR-86-0110. Environmental Research Paper N 954 (AFGL, 1986).

  22. www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. Cited March 17, 2023.

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Yu. Chesnokova or K. M. Firsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokova, T.Y., Firsov, K.M. Impact of Updating Information on the Atmospheric Gas Absorption Line Parameters on the Results of Simulations of IR Radiative Fluxes in the Atmosphere. Atmos Ocean Opt 36, 539–549 (2023). https://doi.org/10.1134/S1024856023050093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023050093

Keywords:

Navigation