Skip to main content
Log in

Air Composition over the Russian Arctic: 2–Carbon Dioxide

Atmospheric and Oceanic Optics Aims and scope Submit manuscript


We analyze the spatial distribution of carbon dioxide over the seas of the Russian Arctic based on the results of the comprehensive experiment conducted in September 2020. It turned out that during the experiment, the concentration of CO2 increased from west to east. The minimum of 396 ppm was over the Barents Sea, and the maximum of 4106 ppm was over the Chukchi Sea. The difference between the concentrations at an altitude of 200 m and in the free troposphere attained 156 ppm over the Barents Sea and decreased to 56 ppm over the Laptev Sea. Over the eastern seas, the difference became generally positive, which was associated with the air transfer from Alaska. Above the waters of most seas, the distribution of carbon dioxide was horizontally heterogeneous, which showed the regional features of its assimilation by the ocean and transfer from the continent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.


  1. IPCC, 2021: Summary for Policymakers. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021), pp. 1–41.

  2. T. G. Shepherd, “Effects of a warming Arctic,” Science 353 (6303), 989–990 (2016).

    Article  ADS  Google Scholar 

  3. M. R. Najafi, F. W. Zwiers, and N. P. Gillett, “Attribution of Arctic temperature change to grenhouse-gas and aerosol influences,” Nat. Clim. Change 5 (3), 246–249 (2015).

    Article  ADS  Google Scholar 

  4. C. D. Keeling, “The concentration and isotopic abundances of carbon dioxide in the atmosphere,” Tellus 12 (2), 200–203 (1960).

    Article  ADS  Google Scholar 

  5. C. Le Quéré, R. M. Andrew, P. Friedlingstein, S. Sitch, J. Hauck, J. Pongratz, P. A. Pickers, J. I. Korsbakken, G. P. Peters, J. G. Canadell, A. Arneth, V. K. Arora, L. Barbero, A. Bastos, L. Bopp, F. Chevallier, L. P. Chini, P. Ciais, S. C. Doney, T. Gkritzalis, D. S. Goll, I. Harris, V. Haverd, F. M. Hoffman, M. Hoppema, R. A. Houghton, G. Hurtt, T. Ilyina, A. K. Jain, T. Johannessen, C. D. Jones, E. Kato, R. F. Keeling, K. K. Goldewijk, P. Landschützer, N. Lefèvre, S. Lienert, Z. Liu, D. Lombardozzi, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S. Nakaoka, C. Neill, A. Olsen, T. Ono, P. Patra, A. Peregon, W. Peters, P. Peylin, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, M. Rocher, C. Rödenbeck, U. Schuster, J. Schwinger, R. Séférian, I. Skjelvan, T. Steinhoff, A. Sutton, P. P. Tans, H. Tian, B. Tilbrook, F. N. Tubiello, I. T. van der Laan-Luijkx, G. R. van der Werf, N. Viovy, A. P. Walker, A. J. Wiltshire, R. Wright, S. Zaehle, and B. Zheng, “Global carbon budget 2018,” Earth Syst. Sci. Data 10 (4), 2141–2194 (2018).

    Article  ADS  Google Scholar 

  6. P. Friedlingstein, M. W. Jones, M. O’Sullivan, R. M. Andrew, J. Hauck, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Quéré, D. C. E. Bakker, J. G. Canadell, P. Ciais, R. B. Jackson, P. Anthoni, L. Barbero, A. Bastos, V. Bastrikov, M. Becker, L. Bopp, E. Buitenhuis, N. Chandra, F. Chevallier, L. P. Chini, K. I. Currie, R. A. Feely, M. Gehlen, D. Gilfillan, T. Gkritzalis, D. S. Goll, N. Gruber, S. Gutekunst, I. Harris, V. Haverd, R. A. Houghton, G. Hurtt, T. Ilyina, A. K. Jain, E. Joetzjer, J. O. Kaplan, E. Kato, K. K. Goldewijk, J. I. Korsbakken, P. Landschutzer, S. K. Lauvset, N. Lefevre, A. Lenton, S. Lienert, D. Lombardozzi, G. Marland, P. C. McGuire, J. R. Melton, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S.-I. Nakaoka, C. Neill, A. M. Omar, T. Ono, A. Peregon, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. Rodenbeck, R. Séférian, J. Schwinger, N. Smith, P. P. Tans, H. Tian, B. Tilbrook, F. N. Tubiello, G. R. van der Werf, A. J. Wiltshire, and S. Zaehle, “Global carbon budget 2019,” Earth Syst. Sci. Data 11 (4), 1783–1838 (2019).

    Article  ADS  Google Scholar 

  7. C. Huntingford and R. J. Oliver, “Constraints on the CO2 fertilization effect emerge,” Nature 600 (7888), 224–225 (2021).

    Article  ADS  Google Scholar 

  8. T. F. Keenan, X. Luo, M. G. De Kauwe, B. E. Medlyn, I. C. Prentice, B. D. Stocker, N. G. Smith, C. Terrer, H. Wang, Y. Zhang, and S. Zhou, “A constraint on historic growth in global photosynthesis due to increasing CO2,” Nature 600 (7888), 253–257 (2021).

    Article  ADS  Google Scholar 

  9. Y. Zhang and A. Ye, “Would the obtainable gross primary productivity (GPP) products stand up? A critical assessment of 45 global GPP PRODUCTS,” Sci. Total Environ. 783, 146965 (2021).

    Article  ADS  Google Scholar 

  10. C. H. Trisos, C. Merow, and A. L. Pigot, “The projected timing of abrupt ecological disruption from climate change,” Nature 580 (7804), 496–501 (2020).

    Article  ADS  Google Scholar 

  11. H. Thomasy, “The Arctic Ocean may not be a reliable carbon sink,” EOS, No. 101 (2020).

  12. M. J. E. van Marle, D. van Wees, R. A. Houghton, R. D. Field, J. Verbesselt, and G. R. van der Werf, “New land-use-change emissions indicate a declining CO2 airborne fraction,” Nature 603 (7901), 450–454 (2022).

    Article  ADS  Google Scholar 

  13. P. Regnier, L. Resplandy, R. G. Najjar, and P. Ciais, “The land-to-ocean loops of the global carbon cycle,” Nature 603 (7901), 401–410 (2022).

    Article  ADS  Google Scholar 

  14. D. Crisp, H. Dolman, T. Tanhua, G. A. McKinley, J. Hauck, A. Bastos, S. Sitch, S. Eggleston, and V. Aich, “How well do we understand the land-ocean-atmosphere carbon cycle?,” Rev. Geophys. 60 (2), e2021RG000736 (2022).

  15. N. Averett, “The ocean is still sucking up carbon-maybe more than we think,” EOS, No. 103 (2022).

  16. M. Zhang, Y. Cheng, Y. Bao, C. Zhao, G. Wang, Y. Zhang, Z. Song, Z. Wu, and F. Qiao, “Seasonal to decadal spatiotemporal variations of the global ocean carbon sink,” Glob. Change Biol. 28 (5), 1786–1797 (2022).

    Article  Google Scholar 

  17. T. T. Isson, N. J. Planavsky, L. A. Coogan, E. M. Stewart, J. J. Ague, E. W. Bolton, S. Zhang, N. R. McKenzie, and L. R. Kump, “Evolution of the global carbon cycle and climate regulation on Earth,” Global. Biogeochem. Cycles 34 (2), e2018GB006061 (2020).

  18. A. J. Watson, U. Schuster, J. D. Shutler, T. Holding, I. G. C. Ashton, P. Landschutzer, D. K. Woolf, and L. Goddijn-Murphy, “Revised estimates of ocean–atmosphere CO2 flux are consistent with ocean carbon inventory,” Nat. Commun. 11, 4422 (2020).

    Article  ADS  Google Scholar 

  19. S. Brothers, D. Bowes, W. D. Pearse, S. Tank, R. Vanengen, and P. Sibley, “Declining summertime PCO2 in tundra lakes in a granitic landscape,” Global. Biogeochem. Cycles 35, e2020GB006850 (2) (2021).

  20. E.-I. Rooma, V. Lauringson, A. Laasa, K. Kangro, M. Viika, P. Meinson, F. Cremonaa, P. Nogesa, and T. Noges, “Summer greenhouse gas fluxes in different types of hemiboreal lakes,” Sci. Total Environ. 843, 156732 (2022).

    Article  ADS  Google Scholar 

  21. A. E. Cassidy, A. Christen, and Y. R. Henry, “The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in high arctic tundra ecosystem,” Biogeosci. 13 (8), 2291–2303 (2016).

    Article  ADS  Google Scholar 

  22. S. Yasunaka, A. Murata, E. Watanabe, M. Chierici, A. Fransson, S. van Heuven, M. Hoppema, M. Ishii, T. Johannessen, N. Kosugi, S. K. Lauvset, J. T. Mathis, S. Nishino, A. M. Omar, A. Olsen, D. Sasano, T. Takahashi, and R. Wanninkhof, “Mapping of the air–sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability,” Polar Sci, No. 3, 323–334 (2016).

    Article  ADS  Google Scholar 

  23. J. C. Bowen, C. P. Ward, G. W. Kling, and R. M. Cory, “Arctic amplification of global warming strengthened by sunlight oxidation of permafrost carbon to CO2,” Geophys. Rev. Lett. 47 (12), e2020GL087085 (2020).

  24. K. Jentzsch, A. Schulz, N. Pirk, T. Foken, S. Crewell, and J. Boike, “High levels of CO2 exchange during synoptic-scale events introduce large uncertainty into the Arctic carbon budget,” Geophys. Rev. Lett. 48 (9), e2020GL092256 (2021).

  25. S. A. Pedron, J. M. Welker, E. S. Euskirchen, E. S. Klein, J. C. Walker, X. Xu, and C. I. Czimczik, “Closing the winter gap—year-round measurements of soil CO2 emission sources in Arctic tundra,” Geophys. Rev. Lett. 49 (6), e2021GL097347 (2022).

  26. J. Prytherch and M. J. Yelland, “Wind, convection and fetch dependence of gas transfer velocity in an Arctic sea-ice lead determined from eddy covariance CO2 flux measurements,” Global Biogeochem. Cycles 35 (2), e2020GB006633 (2021).

  27. P. Massicotte, R. M. W. Amon, D. Antoine, P. Archambault, S. Balzano, S. Belanger, R. Benner, D. Boeuf, A. Bricaud, F. Bruyant, G. Chaillou, M. Chami, B. Charrière, J. Chen, H. Claustre, P. Coupel, N. Delsaut, D. Doxaran, J. Ehn, C. Fichot, M.-H. Forget, P. Fu, J. Gagnon, N. Garcia, B. Gasser, J.-F. Ghiglione, G. Gorsky, M. Gosselin, P. Gourvil, Y. Gratton, P. Guillot, H. J. Heipieper, S. Heussner, S. B. Hooker, Y. Huot, C. Jeanthon, W. Jeffrey, F. Joux, K. Kawamura, B. Lansard, E. Leymarie, H. Link, C. Lovejoy, C. Marec, D. Marie, J. Martin, G. Masse, A. Matsuoka, V. McKague, A. Mignot, W. L. Miller, J.-C. Miquel, A. Mucci, K. Ono, E. Ortega-Retuerta, C. Panagiotopoulos, T. Papakyriakou, M. Picheral, L. Prieur, P. Raimbault, J. Ras, R. A. Reynolds, A. Rochon, J.‑F. Rontani, C. Schmechtig, S. Schmidt, R. Sempere, Y. Shen, G. Song, D. Stramski, E. Tachibana, A. Thirouard, I. Tolosa, J. E. Tremblay, M. Vaitilingom, D. Vaulot, F. Vaultier, J. K. Volkman, H. Xie, G. Zheng, and M. Babin, “The MALINA oceanographic expedition: How do changes in ice cover, permafrost and UV radiation impact biodiversity and biogeochemical fluxes in the Arctic Ocean?,” Earth Syst. Sci. Data 13 (4), 1561–1592 (2021).

    Article  ADS  Google Scholar 

  28. S. Tei, T. Morozumi, A. Kotani, S. Takano, A. Sugimoto, S. Miyazaki, R. Shingubara, R. Fan, R. Petrov, E. Starostin, R. Shakhmatov, A. Nogovitcyn, and T. Maximov, “Seasonal variations in carbon dioxide exchange fluxes at a taiga-tundra boundary ecosystem in northeastern Siberia,” Polar Sci. 28, 100644 (2021).

    Article  Google Scholar 

  29. S. Juutinen, M. Aurela, J.-P. Tuovinen, V. Ivakhov, M. Linkosalmi, A. Rasanen, T. Virtanen, J. Mikola, J. Nyman, E. Vaha, M. Loskutova, A. Makshtas, and T. Laurila, “Variation in CO2 and CH4 fluxes among land cover types in heterogeneous Arctic tundra in north-eastern Siberia,” Biogeosci. 19 (13), 3151–3167 (2022).

    Article  ADS  Google Scholar 

  30. V. M. Ivakhov, N. N. Paramonova, V. I. Privalov, A. V. Zinchenko, M. A. Loskutova, A. P. Makshtas, V. A. Kustov, T. Laurila, M. Aurela, and E. Asmi, “Atmospheric concentration of carbon dioxide at Tiksi and Cape Baranov stations in 2010–2017,” Russ. Meteorol. Hydrol. 44 (4), 291–299 (2019).

    Article  Google Scholar 

  31. A. P. Nagurnyi, “Analysis of data on CO2 concentration in the surface air layer at the North Pole-35 drifting station (2007–2008),” Meteorol. Gidrol., No. 9, 55–61 (2010).

  32. I. I. Pipko, S. P. Pugach, and I. P. Semiletov, “CO2 dynamics on the shelf of the East Siberian Sea,” Russ. Meteorol. Hydrol. 35 (9), 624–632 (2010).

    Article  Google Scholar 

  33. I. P. Semiletov, N. E. Shakhova, I. I. Pipko, S. P. Pugach, A. N. Charkin, O. V. Dudarev, D. A. Kosmach, and S. Nishino, “Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of Laptev Sea,” Biogeosci. 10 (9), 5977–5996 (2013).

    Article  ADS  Google Scholar 

  34. J. L. France, M. Cain, R. E. Fisher, D. Lowry, G. Allen, S. J. O. Shea, S. Illingworth, J. Pyle, N. Warwick, B. T. Jones, M. W. Gallagher, K. Bower, M. L. Breton, C. Percival, J. Muller, A. Wellpott, S. Bauguitte, C. George, G. D. Hayman, A. J. Manning, C. L. Myhre, M. Lanoiselle, and E. G. Nisbet, " Measurements of δ13C in CH4 and using particle dispersion modeling to characterize sources of Arctic methane within an air mass," J. Geophys. Res.: Atmos. 121 (23), 14 257–14 270 (2016).

    Article  Google Scholar 

  35. B. Quennehen, A. Schwarzenboeck, J. Schmale, J. Schneider, H. Sodemann, A. Stohl, G. Ancellet, S. Crumeyrolle, and K. S. Law, “Physical properties of pollution aerosol particles transported from North America to Greenland as measured during the POLARCAT summer campaign,” Atmos. Chem. Phys. 11 (21), 10 947–10 963 (2011).

    Article  Google Scholar 

  36. W. R. Leaitch, A. Korolev, A. A. Aliabadi, J. Burkart, M. D. Willis, J. P. D. Abbatt, H. Bozem, P. Hoor, F. Kollner, J. Scchneider, A. Herber, C. Konrad, and R. Brauner, “Effects of 20–100 nm particles on liquid clouds in the clean summertime Arctic,” Atmos. Chem. Phys. 16 (17), 11 107–11 124 (2016).

    Article  Google Scholar 

  37. Airborne Measurements for Environmental Research, Ed. by M. Wendisch and J.-L. Brenguier (Wiley, Weinheim, 2013).

    Google Scholar 

  38. P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, F. Nedelek, J.-D. Paris, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Large-scale studies of gaseous and aerosol composition of air over Siberia,” Opt. Atmos. Okeana 27 (3), 232–239 (2014).

    Google Scholar 

  39. V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, Ph. Nedelec, J.-D. Paris, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “The vertical distributions of gaseous and aerosol admixtures in air over the Russian Arctic,” Atmos. Ocean. Opt. 31 (3), 300–310 (2018).

    Article  Google Scholar 

  40. B. D. Belan, G. Ancellet, I. S. Andreeva, P. N. Antokhin, V. G. Arshinova, M. Y. Arshinov, Y. S. Balin, V. E. Barsuk, S. B. Belan, D. G. Chernov, D. K. Davydov, A. V. Fofonov, G. A. Ivlev, S. N. Kotel’nikov, A. S. Kozlov, A. V. Kozlov, K. Law, A. V. Mikhal’chishin, I. A. Moseikin, S. V. Nasonov, P. Nedelec, O. V. Okhlopkova, S. E. Ol’kin, M. V. Panchenko, J.-D. Paris, I. E. Penner, I. V. Ptashnik, T. M. Rasskazchikova, I. K. Reznikova, O. A. Romanovskii, A. S. Safatov, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, S. V. Yakovlev, and P. N. Zenkova, “Integrated airborne investigation of the air composition over the Russian sector of the Arctic,” Atmos. Meas. Tech. 15 (13), 3941–3967 (2022).

    Article  Google Scholar 

  41. O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, E. V. Guruleva, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, K. Law, T. M. Rasskazchikova, J.-D. Paris, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Air composition over the Russian sector of the Arctic in September 2020. 1. Methane,” Atmos. Ocean. Opt. 36 (5), 470–489 (2023).

  42. S. J. O’Shea, G. Allen, M. W. Gallagher, K. Bower, S. M. Illingworth, J. B. A. Muller, Jones, C. J. Percival, S. J.-B. Bauguitte, M. Cain, N. Warwick, A. Quiguet, U. Skuba, J. Drewer, K. Dinsmore, E. G. Nisbet, D. Lowry, R. E. Fisher, J. L. France, M. Aurela, A. Lohila, G. Hayman, C. George, D. B. Clark, A. J. Manning, A. D. Friend, and J. Pyle, “Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM,” Atmos. Chem. Phys. 14 (23), 13159–13174 (2014).

    ADS  Google Scholar 

  43. D. Pagonis, P. Campuzano-Jost, H. Guo, D. A. Day, M. K. Schueneman, W. L. Brown, B. A. Nault, H. Stark, K. Siemens, A. Laskin, F. Piel, L. Tomsche, A. Wisthaler, M. M. Coggon, G. I. Gkatzelis, H. S. Halliday, J. E. Krechmer, R. H. Moore, D. S. Thomson, C. Warneke, E. B. Wiggins, and J. L. Jimenez, “Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol,” Atmos. Meas. Tech. 14 (2), 1525–1544 (2021).

    Article  Google Scholar 

  44. B. J. Gaudet, K. J. Davis, S. Pal, A. R. Jacobson, A. Schuh, T. Lauvaux, S. Feng, and E. V. Browell, “Regional-scale, sector specific evaluation of global CO2 inversion models using aircraft data from the ACT-America project,” J. Geophys. Res.: Atmos. 126 (4), e2020JD033623 (2021).

  45. J. P. DiGangi, Y. Choi, J. B. Nowak, H. S. Halliday, G. S. Diskin, S. Feng, Z. R. Barkley, T. Lauvaux, S. Pal, K. J. Davis, B. C. Baier, and C. Sweeney, “Seasonal variability in local carbon dioxide biomass burning sources over central and eastern US using airborne in situ enhancement ratios,” J. Geophys. Res.: Atmos. 126 (24), e2020JD034525 (2021).

  46. J. S. H. Bisht, T. Machida, N. Chandra, K. Tsuboi, P. K. Patra, T. Umezawa, Y. Niwa, Y. Sawa, S. Morimoto, T. Nakazawa, N. Saitoh, and M. Takigawa, “Seasonal variations of SF6, CO2, CH4, and N2O in the UT/LS region due to emissions, transport, and chemistry,” J. Geophys. Res.: Atmos. 126 (4), e2020JD033541 (2021).

  47. Z. Ouyang, Y. Li, D. Qi, W. Zhong, A. Murata, S. Nishino, Y. Wu, M. Jin, D. Kirchman, L. Chen, and W.-J. Cai, “The changing CO2 sink in the western Arctic Ocean from 1994 to 2019,” Global Biogeochem. Cycles 36 (1), e2021GB007032 (2022).

  48. M. Ueyama, H. Iwata, H. Nagano, N. Tahara, C. Iwama, and Y. Harazono, “Carbon dioxide balance in early-successional forests after forest fires in interior Alaska,” Agric. Forest Meteorol. 275, 196–207 (2019).

    Article  ADS  Google Scholar 

  49. C. Sweeney, A. Chatterjee, S. Wolter, K. McKain, R. Bogue, S. Conley, T. Newberger, L. Hu, L. Ott, B. Poulter, L. Schiferl, B. Weir, Z. Zhang, and C. E. Miller, “Using atmospheric trace gas vertical profiles to evaluate model fluxes: A case study of Arctic-CAP observations and GEOS simulations for the ABoVE domain,” Atmos. Chem. Phys. 22 (9), 6347–6364 (2022).

    Article  ADS  Google Scholar 

  50. Greenhouse Gas Bulletin—The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2020 (WMO, 2021), no. 17.

  51. N. L. Glinka, General Chemistry (Khimiya, Leningrad, 1985) [in Russian].

    Google Scholar 

  52. F. Boscolo-Galazzo, K. A. Crichton, S. Barker, and P. N. Pearson, “Temperature dependency of metabolic rates in the upper ocean: A positive feedback to global climate change?,” Glob. Planet. Change 170 (11), 201–212 (2018).

    Article  ADS  Google Scholar 

  53. S. Trumbore, “Carbon respired by terrestrial ecosystems—recent progress and challenges,” Global Change Biol. 12 (2), 141–153 (2006).

    Article  ADS  Google Scholar 

Download references


Atmospheric sounding was carried out on the Tu-134 Optik flying laboratory created under support of the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences). Data processing and analysis of the results were carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation with in the project “Study of Anthropogenic and Natural Factors of Changes in the Air Composition and Environmental Objects in Siberia and the Russian Arctic under the Rapid Climate Change with the use of the USCTu-134 Optik Flying Laboratory” (agreement no. 075-15-2021-934).

Author information

Authors and Affiliations


Corresponding author

Correspondence to B. D. Belan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antokhina, O.Y., Antokhin, P.N., Arshinova, V.G. et al. Air Composition over the Russian Arctic: 2–Carbon Dioxide. Atmos Ocean Opt 36, 490–500 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: