Skip to main content
Log in

Changes in Cyclone Activity and Precipitation in the Extratropical Latitudes of the Northern Hemisphere in Recent Decades According to ERA5 Reanalysis

  • ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

We quantified the seasonal/regional patterns and changes in cyclone activity in the atmosphere of the Northern Hemisphere and determined the contribution of extratropical cyclones to the formation of corresponding patterns and precipitation changes. It is ascertained that the contribution of extratropical cyclones to the total amount of precipitation exceeds 60% on the whole; for regions with a high cyclone frequency, it attains 75% in winter and 65% in summer. Intense cyclones contribute the most: 60% in winter and 35% in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Climate Change 2021: The Physical Science Basis. Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate (Cambridge University Press, Cambridge, 2021).

  2. The Second Assessment Report on Climate Change and Its Consequences on the Territory of the Russian Federation (Rosgidromet, Moscow, 2014) [in Russian].

  3. Intense Atmospheric Vortices and Their Dynamics, Ed. by I.I. Mokhov, M.V. Kurganskii, and O.G. Chkhetiani (GEOS, Moscow, 2018) [in Russian].

    Google Scholar 

  4. M. G. Akperov, A. V. Eliseev, I. I. Mokhov, V. A. Semenov, M. R. Parfenova, and T. Kenig, “Wind energy potential in the Arctic and subarctic regions and its projected change in the 21st century according to regional climate model simulations,” Meteorol. Gidrol., No. 6, 18–29 (2022).

  5. E. Voskresenskaya and E. Vyshkvarkova, “Extreme precipitation over the Crimean Peninsula,” Quatern. Int. 409, 75–80 (2016).

    Article  Google Scholar 

  6. M. K. Pichugin, I. A. Gurvich, and A. V. Baranyuk, “Analysis of extreme winds in intense extratropical cyclones over the North Pacific based on satellite observations from SMAP,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 19 (5), 287–299 (2022). https://doi.org/10.21046/2070-7401-2022-19-5-287-299

    Article  Google Scholar 

  7. M. Yu. Bardin and T. V. Platova, “Changes in seasonal air temperature extremes in Moscow and the central regions of European Russia,” Russ. Meteorol. Hydrol. 45 (7), 466–477 (2020).

    Article  Google Scholar 

  8. I. I. Mokhov, “Climate change: Causes, risks, consequences, and problems of adaptation and regulation,” Herald Russ. Acad. Sci. 92 (1), 1–11 (2022).

    Article  Google Scholar 

  9. I. I. Mokhov, “Seasonal peculiarities of the variations in the frequency of extreme weather-climate events in Russian regions in past decades,” Russ. Meteorol. Hydrol. (2023) (in print).

  10. U. Neu, M. G. Akperov, R. Benestad, R. Blender, R. Caballero, A. Cocozza, H. Dacre, Y. Feng, J. Grieger, S. Gulev, J. Hanley, T. Hewson, K. Hodges, M. Inatsu, K. Keay, S. F. Kew, I. Kindem, G. C. Leckebusch, M. Liberato, P. Lionello, I. I. Mokhov, J. G. Pinto, C. C. Raible, M. Reale, I. Rudeva, M. Schuster, I. Simmonds, M. Sinclair, M. Sprenger, N. D. Tilinina, I. F. Trigo, S. Ulbrich, U. Ulbrich, X. L. Wang, H. Wernli, and L. Xia, “IMILAST—a community effort to intercompare cyclone detection and tracking algorithms: Quantifying method-related uncertainties,” Bull. Amer. Meteorol. Soc. 94 (4), 529–547 (2013).

    Article  ADS  Google Scholar 

  11. I. I. Mokhov, O. I. Mokhov, V. K. Petukhov, and R. R. Khairullin, “Effect of global climate changes on vortex activity in the atmosphere,” Izv. Akad. Nauk. Fiz. Atmos. Okeana 28 (1), 11–26 (1992).

    Google Scholar 

  12. I. I. Mokhov, O. I. Mokhov, V. K. Petukhov, and R. R. Khairullin, “Effect of clouds on the vortex activity in the atmosphere and climate changes,” Meteorol. Gidrol., No. 1, 5–11 (1992).

  13. S. K. Gulev, O. Zolina, and S. Grigoriev, “Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data,” Clim. Dyn. 17 (10), 795–809 (2001).

    Article  Google Scholar 

  14. M. Yu. Bardin and A. B. Polonsky, “North Atlantic Oscillation and synoptic variability in the European-Atlantic region in winter,” Izv., Atmos. Ocean. Phys. 41 (2), 127–136 (2005).

    Google Scholar 

  15. M. G. Akperov, G. S. Golitsyn, I. I. Mokhov, M. Yu. Bardin, and E. M. Volodin, “Probability distributions for cyclones and anticyclones from the NCEP/ NCAR reanalysis data and the INM RAS climate model,” Izv., Atmos. Ocean. Phys. 43 (6), 705–712 (2007).

    Article  MATH  Google Scholar 

  16. G. S. Golitsyn, I. I. Mokhov, M. G. Akperov, and M. Yu. Bardin, “Distribution functions of probabilities of cyclones and anticyclones from 1952 to 2000: An instrument for the determination of global climate variations,” Dokl. Earth Sci. 413 (1), 324–326 (2007).

    Article  ADS  Google Scholar 

  17. M. G. Akperov and I. I. Mokhov, “Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime,” Izv., Atmos. Ocean. Phys. 49 (2), 113–120 (2013).

    Article  Google Scholar 

  18. M. Messmer and I. Simmonds, “Global analysis of cyclone-induced compound precipitation and wind extreme events,” Weather Clim. Extremes 32, 100324 (2021).

    Article  Google Scholar 

  19. A. V. Chernokulsky, A. V. Eliseev, F. A. Kozlov, N. N. Korshunova, M. V. Kurgansky, I. I. Mokhov, V. A. Semenov, N. V. Shvets’, A. N. Shikhov, and Yu. I. Yarynich, “Atmospheric severe convective events in Russia: Changes observed from different data,” Russ. Meteorol. Hydrol. 48 (5), 343–354 (2022).

  20. G. Berry, M. J. Reeder, and C. Jakob, “A global climatology of atmospheric fronts,” Geophys. Rev. Lett. 38, L04809 (2011).

  21. I. Simmonds, K. Keay, and J. Bye, “Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis,” J. Clim. 25, 1945–1962 (2011).

    Article  ADS  Google Scholar 

  22. J. L. Catto, C. Jakob, G. Berry, and N. Nicholls, “Relating global precipitation to atmospheric fronts,” Geophys. Rev. Lett. 39, L10805 (2012).

  23. M. K. Hawcroft, L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, “How much Northern Hemisphere precipitation is associated with extratropical cyclones?,” Geophys. Rev. Lett. 39, L24809 (2012).

  24. M. Hawcroft, E. Walsh, K. Hodges, and G. Zappa, “significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones,” Environ. Res. Lett. 13 (12), 124006 (2018).

    Article  ADS  Google Scholar 

  25. M. K. Hawcroft, L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, “Can climate models represent the precipitation associated with extratropical cyclones?,” Clim. Dyn. 47 (3-4), 679–695 (2016).

    Article  Google Scholar 

  26. J. F. Booth, C. M. Naud, and J. Willison, “Evaluation of extratropical cyclone precipitation in the North Atlantic Basin: An analysis of ERA-Interim, WRF, and two CMIP5 models,” J. Clim. 31 (6), 2345–2360 (2018).

    Article  ADS  Google Scholar 

  27. Z. Zhang and B. A. Colle, “Changes in extratropical cyclone precipitation and associated processes during the twenty-first century over Eastern North America and the Western Atlantic using a cyclone-relative approach,” J. Clim. 30 (21), 8633–8656 (2017).

    Article  ADS  Google Scholar 

  28. S. Pfahl and H. Wernli, “Quantifying the relevance of cyclones for precipitation extremes,” J. Clim. 25 (19), 6770–6780 (2012).

    Article  ADS  Google Scholar 

  29. I. I. Mokhov, V. A. Semenov, and V. Ch. Khon, “Estimates of possible regional hydrologic regime changes in the 21st century based on global climate models,” Izv., Atmos. Ocean. Phys. 39 (2), 130–144 (2003).

    Google Scholar 

  30. I. I. Mokhov and M. G. Akperov, “Tropospheric lapse rate and its relation to surface temperature from reanalysis data,” Izv., Atmos. Ocean. Phys. 42 (4), 430–438 (2006).

    Article  Google Scholar 

  31. M. G. Akperov, I. I. Mokhov, M. A. Dembitskaya, M. R. Parfenova, and A. Rinke, “Lapse rate peculiarities in the Arctic from reanalysis data and model simulations,” Russ. Meteorol. Hydrol. 44 (2), 97–102 (2019).

    Article  Google Scholar 

  32. B. Sun, P. Ya. Groisman, and I. I. Mokhov, “Recent changes in cloud type frequency and inferred increases in convection over the United States and the former USSR,” J. Clim. 14, 1864–1880 (2001).

    Article  ADS  Google Scholar 

  33. A. V. Chernokulsky, O. N. Bulygina, and I. I. Mokhov, “Recent variations of cloudiness over Russia from surface daytime observations,” Environ. Res. Lett. 6, 035202 (2011).

    Article  ADS  Google Scholar 

  34. A. Chernokulsky, F. Kozlov, O. Zolina, O. Bulygina, I. Mokhov, and V. A. Semenov, “Observed changes in convective and stratiform precipitation in Northern Eurasia over the last five decades,” Environ. Res. Lett. 14, 045001–17 (2019).

    Article  ADS  Google Scholar 

  35. H. B. Hersbach, B. Bell, P. Berrisford, Sh. Hirahara, A. Horanyi, J. Munoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Holm, M. Janiskova, S. Keeley, P. Laloyaux, Ph. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J.-N. Thepaut, “The ERA5 global reanalysis,” Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  ADS  Google Scholar 

  36. D. A. Lavers, A. Simmons, F. Vamborg, and M. J. Rodwell, “An evaluation of ERA5 precipitation for climate monitoring,” Q. J. R. Meteorol Soc. 148, 3152–3165 (2022).

    Article  ADS  Google Scholar 

  37. M. Akperov, A. Rinke, I. I. Mokhov, V. A. Semenov, M. R. Parfenova, H. Matthes, M. Adakudlu, F. Boberg, J. H. Christensenefn, M. A. Dembitskaya, K. Dethloff, X. Fettweis, O. Gutjahr, G. Heinemann, T. Koenigk, N. V. Koldunov, R. Laprise, R. Mottram, O. Nikiema, D. Sein, and W. Zhang, “Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX),” Glob. Planet. Change 182, 103005 (2019).

    Article  Google Scholar 

  38. I. Simmonds and K. Keay, “Extraordinary september Arctic sea ice reductions and their relationships with storm behavior over 1979–2008,” Geophys. Rev. Lett. 36, L19715 (2009).

  39. M. G. Akperov and I. I. Mokhov, “A comparative analysis of the method of extratropical cyclone identification,” Izv., Atmos. Ocean. Phys. 46 (5), 574–590 (2010).

    Article  Google Scholar 

  40. U. Ulbrich, G. C. Leckebusch, J. Grieger, M. Schuster, M. Akperov, M. Yu. Bardin, Y. Feng, S. Gulev, M. Inatsu, K. Keay, S. F. Kew, M. L. R. Liberato, P. Lionello, I. I. Mokhov, U. Neu, J. G. Pinto, C. C. Raible, M. Reale, I. Rudeva, I. Simmonds, N. D. Tilinina, I. F. Trigo, S. Ulbrich, X. L. Wang, H. Wernli, and the IMILAST team, “Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?,” Meteorologische Zeitschrift 22 (1), 61–68 (2013).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 22-27-00780).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. G. Akperov or I. I. Mokhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akperov, M.G., Mokhov, I.I. Changes in Cyclone Activity and Precipitation in the Extratropical Latitudes of the Northern Hemisphere in Recent Decades According to ERA5 Reanalysis. Atmos Ocean Opt 36, 532–538 (2023). https://doi.org/10.1134/S1024856023050020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023050020

Keywords:

Navigation