Skip to main content
Log in

A Neural Network Model for Estimating Carbon Fluxes in Forest Ecosystems from Remote Sensing Data

  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript


Forests are among the main places on Earth where carbon is collected and accumulated. However, instrumental assessment of carbon fluxes is possible only for small areas. When solving the scaling problem, machine learning methods are used, which allow transforming the Earth’s surface reflectance intensities in different spectral ranges into ground-based in situ observations. We suggest a regression neural network model of the multilayer perceptron type for assessment of carbon fluxes. The model is trained on FLUXNET network data for a station located in a boreal coniferous forest (56.4615° N, 32.9221° E). Using the vegetation indices NDVI and EVI measured by the MODIS spectroradiometer onboard the Aqua satellite, the air temperature at an altitude of 2 m, and total precipitation as input data, the model estimates the gross primary production (GPP), net ecosystem exchange (NEE), ecosystem respiration (TER), and some other parameters which characterize water and energy fluxes. The statistical assessments for the test dataset show high correlation coefficients (R) and Nash–Sutcliffe coefficients (NSE): R > 0.9 and NSE ≥ 0.87 for GPP and TER; R = 0.4 and NSE = 0.15 for NEE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others


  1. D. Baldocchi, E. Falge, L. Gu, R. Olson, D. Hollinger, S. Running, P. Anthoni, Ch. Bernhofer, K. Davis, R. Evans, J. Fuentes, A. Goldstein, G. Katul, B. Law, X. Lee, Y. Malhi, T. Meyers, W. Munger, W. Oechel, U. K. T. Paw, K. Pilegaard, H. P. Schmid, R. Valentini, S. Verma, T. Vesala, K. Wilson, and S. Wofsy, “FLUXNE-T: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities,” Bull. Am. Meteorol. Soc. 82 (11), 2415–2434 (2001).

    Article  ADS  Google Scholar 

  2. K. G. Gribanov, R. Imasu, and V. I. Zakharov, “Neural networks for CO2 profile retrieval from the data of GOSA-T/TANSO-FTS,” Atmos. Ocean. Opt. 23 (1), 42–47 (2010).

    Article  Google Scholar 

  3. D. Rolnick, P. L. Donti, L. H. Kaack, K. Kochanski, A. Lacoste, K. Sankaran, Ross A. Slavin, N. Milojevic-Dupont, N. Jaques, A. Waldman-Brown, A. Luccioni, T. Maharaj, E. D. Sherwin, S. Karthik Mukkavilli, K. P. Kording, C. Gomes, A. Y. Ng, D. Hassabis, J. C. Platt, F. Creutzig, J. Chayes, and Y. Bengio, “Tackling climate change with machine learning,” ACM Computing Surveys (CSUR) 55 (2), 1–96 (2022).

    Article  Google Scholar 

  4. P. D. Heermann and N. Khazenie, “Classification of multispectral remote sensing data using a back-propagation neural network,” IEEE Trans. Geosci. Remote Sens. 30 (1), 81–88 (1992).

    Article  ADS  Google Scholar 

  5. M. Cao, S. Marshall, and K. Gregson, “Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model,” J. Geophys. Res.: Atmos. 101 (D9), 14 399–14 414 (1996).

    Article  ADS  Google Scholar 

  6. X. Dou, Y. Yang, and J. Luo, “Estimating forest carbon fluxes using machine learning techniques based on eddy covariance measurements,” Sustainability 10 (1), 203 (2018).

    Article  Google Scholar 

  7. T. Yu, Q. Zhang, and R. Sun, “Comparison of machine learning methods to up-scale gross primary production,” Remote Sens. 13 (13), 2448 (2021).

    Article  ADS  Google Scholar 

  8. A. V. Polyakov, “The method of artificial neural networks in retrieving vertical profiles of atmospheric parameters,” Atmos. Ocean. Opt. 27 (3), 247–252 (2014).

    Article  Google Scholar 

  9. J. Zeng, T. Matsunaga, Z.-H. Tan, N. Saigusa, T. Shirai, Y. Tang, S. Peng, and Y. Fukuda, “Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest,” Sci. Data 7 (1), 1–11 (2020).

    Article  Google Scholar 

  10. G. Tramontana, M. Jung, C. R. Schwalm, K. Ichii, G. Camps-Valls, B. Raduly, M. Reichstein, M. A. Arain, A. Cescatti, G. Kiely, L. Merbold, P. Serrano-Ortiz, S. Sickert, S. Wolf, and D. Papale, “Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms,” Biogeosciences, No. 13, 4291–4313 (2016).

    Article  ADS  Google Scholar 

  11. J. Kurbatova, C. Li, A. Varlagin, X. Xiao, and N. Vygodskaya, “Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia,” Biogeosciences 5 (4), 969–980 (2008).

    Article  ADS  Google Scholar 

  12. W. Zhengxing, L. Chuang, and H. Alfredo, “From AVHRR-NDVI to MODIS-EVI: Advances in vegetation index research,” Acta Ecologica Sinica 23 (5), 979–987 (2003).

    Google Scholar 

  13. ORNL DAAC 2018. MODIS and VIIRS Land Products Global Subsetting and Visualization Tool. ORNL DAAC, Oak Ridge, Tennessee, USA. Cited February, 2022.

  14. NASA Earth Data Portal. https://ladsweb.modaps.eosdis. Cited July 25, 2022.

  15. ECMWF Copernicus Climate Change Data Service.!/dataset/ reanalysis-era5-land?tab=form. Cited July 25, 2022.

  16. D. Baldocchi, B. Hicks, and T. Meyers, “Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods,” Ecology 69, 1331–1340 (1988).

    Article  Google Scholar 

  17. H. P. Schmid, “Source areas for scalars and scalar fluxes,” Bound.-Lay. Meteorol. 67, 293–318 (1994).

    Article  ADS  Google Scholar 

  18. D. E. Reichle, The Global Carbon Cycle and Climate Change: Scaling Ecological Energetics from Organism to the Biosphere (Elsevier, 2020), pp. 150–152.

    Book  Google Scholar 

  19. J. E. Nash and J. V. Sutcliffe, “River flow forecasting through conceptual models. Part I—A discussion of principles,” J. Hydrol. 10 (3), 282–290 (1970).

    Article  ADS  Google Scholar 

  20. L. Bottou, “Large-scale machine learning with stochastic gradient descent,” Proc. COMPSTAT'2010 (2010), pp. 177–186.

  21. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: an imperative style, high-performance deep learning library,” Adv. Neural Inform. Proces. Syst. 32, 8024–8035 (2019).

    Google Scholar 

  22. N. Huang, L. Wang, Y. Zhang, S. Gao, and Z. Niu, “Estimating the net ecosystem exchange at global FLUXNET sites using a random forest model,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14, 9826–9836 (2021).

    Article  ADS  Google Scholar 

Download references


The work was supported by the Ministry of Science Higher and Education of the Russian Federation (project no. FEUZ-2023-0023).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to A. P. Rozanov or K. G. Gribanov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozanov, A.P., Gribanov, K.G. A Neural Network Model for Estimating Carbon Fluxes in Forest Ecosystems from Remote Sensing Data. Atmos Ocean Opt 36, 323–328 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: