Skip to main content
Log in

Absorption by Water Dimers in Water Vapor IR Spectra at Different Temperatures

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Contributions of stable dimers to the water continuum in the 1600 and 8800 cm−1 bands are examined. They are found as the difference between experimental data and the calculation data within the asymptotic line wing theory taking into account the violation of the longwave approximation for the molecular centers of mass. The stable dimer contribution is close in value to the contribution due to all other pair interactions and decreases with an increase in temperature. The equilibrium constant of the dimer formation reaction is estimated from the temperature dependence of the classical interaction potential of water molecules, which describes the temperature behavior of the second virial coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. V. Ptashnik, ”Water dimers: An “unknown” experiment,” Atmos. Ocean. Opt. 18 (4), 324–326 (2005).

    Google Scholar 

  2. I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour self-continuum and water dimers: 1. Analysis of recent work,” J. Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).

    Article  ADS  Google Scholar 

  3. H. G. Kjaergaard, A. L. Garden, G. M. Chaban, R. B. Gerber, D. A. Matthews, and J. F. Stanton, “Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches,” J. Phys. Chem. A 112, 4324–4335 (2008).

    Article  Google Scholar 

  4. T. Salmi, A. L. Garden, H. G. Kjaergaard, J. Tennyson, and L. Halonen, “Calculation of the O–H stretching vibrational overtone spectrum of the water dimer,” J. Phys. Chem. A 112, 6305–6312 (2008).

    Article  Google Scholar 

  5. S. E. Lokshtanov, S. V. Ivanov, and A. A. Vigasin, “Statistical physics partitioning and classical trajectory analysis of the phase space in CO2–Ar weakly interacting pairs,” J. Mol. Struct. 742, 31–36 (2005).

    Article  ADS  Google Scholar 

  6. I. V. Ptashnik, ”Water vapour continuum absorption: Short prehistory and current status,” Opt. Atmos. Okeana 28 (5), 443–459 (2015). https://doi.org/10.15372/AOO20150508

    Article  Google Scholar 

  7. A. A. Simonova and I. V. Ptashnik, “Estimation of water dimers contribution to the water vapour continuum absorption within 0.94 and 1.13 μm bands,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100350 (2016).

  8. E. A. Serov, T. A. Odintsova, M. Yu. Tretyakov, and V. E. Semenov, “On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands,” J. Quant. Spectrosc. Radiat. Transfer 193, 1–12 (2017).

    Article  ADS  Google Scholar 

  9. T. A. Odintsova, M. Yu. Tretyakov, O. Pirali, and P. Roy, “Water vapor continuum in the range of rotational spectrum of H2O molecule: New experimental data and their comparative analysis,” J. Quant. Spectrosc. Radiat. Transfer 187, 116–123 (2017).

    Article  ADS  Google Scholar 

  10. A. A. Simonova, I. V. Ptashnik, J. Elsey, R. A. McPheat, K. P. Shine, and K. M. Smith, “Water vapour self-continuum in near-visible IR absorption bands: Measurements and semiempirical model of water dimer absorption,” J. Quant. Spectrosc. Radiat. Transfer 277 (107957), 1–17 (2022).

    Article  Google Scholar 

  11. T. A. Odintsova, A. O. Koroleva, A. A. Simonova, A. Campargue, and M. Yu. Tretyakov, “The atmospheric continuum in the "terahertz gap” region (15-700 cm–1): Review of experiments at SOLEIL synchrotron and modeling," J. Mol. Spectrosc. 386, 111603–1 (2022).

    Article  Google Scholar 

  12. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Profile and Molecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].

    MATH  Google Scholar 

  13. S. D. Tvorogov and O. B. Rodimova, Collisional Profiles of Spectral Lines (Publishing House of IAO SB RAS, Tomsk, 2013) [in Russian].

    Google Scholar 

  14. Yu. V. Bogdanova and O. B. Rodimova, “Ratio between monomer and dimer absorption in water vapor within the H2O rotational band,” Atmos. Ocean. Opt. 31 (5), 457–465 (2018).

    Article  Google Scholar 

  15. Yu. V. Bogdanova, T. E. Klimeshina, and O. B. Rodimova, “Dimer absorption within water vapor bands in the IR region,” Atmos. Ocean. Opt. 33 (2), 134–140 (2020).

    Article  Google Scholar 

  16. S. D. Tvorogov, “Problem of centers of mass within the problem of the contour of spectral lines. I. Existence of long trajectories,” Atmos. Ocean. Opt. 22 (3), 257–263 (2009).

    Article  Google Scholar 

  17. J. V. Bogdanova and O. B. Rodimova, “Role of diffusion in the violation of the long-wave approximation in line wings,” Int. J. Quantum Chem. 112 (17), 2924–2931 (2012).

    Article  Google Scholar 

  18. Yu. V. Bogdanova, T. E. Klimeshina, and O. B. Rodimova, “Water vapor line wing absorption and violation of the long-wave approximation for molecular centers of mass,” Atmos. Ocean. Opt. 30 (2), 111–122 (2017).

    Article  Google Scholar 

  19. E. P. Gordov and S. D. Tvorogov, Quantum Theory Method of Semiclassical Representation (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  20. S. D. Tvorogov and O. B. Rodimova, “Asymptotic and quasistatic approaches in spectral line shape theory,” Opt. Atmos. Okeana 25 (1), 31–45 (2012).

    Google Scholar 

  21. O. B. Rodimova, “Absorption coefficient and intermolecular vibrations in the CO–Ar system,” Atmos. Ocean. Opt. 34 (4), 288–292 (2021).

    Article  Google Scholar 

  22. D. Burch and R. Alt, Continuum Absorption by H 2 O in the 700–1200 and 2400–2800 cm −1 Windows. Report N AFGL-TR-84-0128 (Hanscom AFB, MA, 1984).

    Google Scholar 

  23. L. Lechevallier, S. Vasilchenko, R. Grilli, D. Mondelain, D. Romanini, and A. Campargue, “The water vapor selfcontinuum absorption in the infrared atmospheric windows: New Laser measurements near 3.3 and 2.0 μm,” Atmos. Meas. Tech 11, 2159–2171 (2018).

    Article  Google Scholar 

  24. A. Campargue, S. Kassi, D. Mondelain, S. Vasilchenko, and D. Romanini, “Accurate laboratory determination of the near-infrared water vapor self-continuum: A test of the MT_CKD Model,” J. Geophys. Res.: Atmos. 121, 13 180–13 203 (2016).

    Article  Google Scholar 

  25. L. Richard, S. Vasilchenko, D. Mondelain, I. Ventrillard, D. Romanini, and A. Campargue, “Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows,” J. Quant. Spectrosc. Radiat. Transfer 201, 171–179 (2017).

    Article  ADS  Google Scholar 

  26. D. Mondelain, A. Aradj, S. Kassi, and A. Campargue, “The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window,” J. Quant. Spectrosc. Radiat. Transfer 130, 381–391 (2013).

    Article  ADS  Google Scholar 

  27. T. Salmi, V. Hanninen, A. L. Garden, H. G. Kjaergaard, J. Tennyson, and L. Halonen, “Calculation of the O–H stretching vibrational overtone spectrum of the water dimer,” J. Phys. Chem. A 112, 6305–6312 (2008).

    Article  Google Scholar 

  28. I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D163057 (2011).

    Google Scholar 

  29. T. E. Klimeshina and O. B. Rodimova, “Calculation of H2O continuum absorption in IR-region based on Burch’s measurements,” Opt. Atmos. Okeana 32 (8), 628–632 (2019). https://doi.org/10.15372/AOO20190804

    Article  Google Scholar 

  30. C. Leforestier, “Water dimer equilibrium constant calculation: A quantum formulation including metastable states,” J. Chem. Phys. 140, 074106–1 (2014).

    Article  ADS  Google Scholar 

  31. M. Y. Tretyakov, E. A. Serov, and T. A. Odintsova, “Eqilibrium thermodynamic state of water vapor and the collisional interaction of molecules,” Radiophys. Quant. Electron 54, 700–716 (2012).

    Article  ADS  Google Scholar 

  32. L. A. Curtiss, D. J. Frurip, and M. Blander, “Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity,” J. Chem. Phys. 71 (6), 2703–2711 (1979).

    Article  ADS  Google Scholar 

  33. K. Pfeilsticker, A. Lotter, C. Peters, and H. Bosch, “Atmospheric detection of water dimers via near-infrared absorption,” Science 300, 2078–2080 (2003).

    Article  ADS  Google Scholar 

  34. F. M. Nicolaisen, “IR absorption spectrum (4200–3100 cm–1) of H2O and (H2O)2 in CCl4. Estimates of the equilibrium constant and evidence that the atmospheric water absorption continuum is due to the water dimer,” J. Quant. Spectrosc. Radiat. Transfer 110, 2060–2076 (2009).

    Article  ADS  Google Scholar 

  35. M. Yu. Tretyakov, M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova, and G. M. Bubnov, “Water dimer and the atmospheric continuum,” Phys.-Uspekhi 57 (11), 1083–1098 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Rodimova.

Ethics declarations

The author declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodimova, O.B. Absorption by Water Dimers in Water Vapor IR Spectra at Different Temperatures. Atmos Ocean Opt 36, 293–299 (2023). https://doi.org/10.1134/S1024856023040140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023040140

Keywords:

Navigation