Skip to main content
Log in

Expert List of Absorption Lines of the 32S16O2 Molecule in the 0–4200 cm–1 Spectral Region

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A highly accurate and detailed expert list of absorption lines of the 32SO2 molecule in the range 0–4200 cm−1 has been created. The line centers in the expert list are determined from the experimental and calculated by the effective Hamiltonian energy levels, and the intensities are mainly variational data. The list contains 549 200 vibrational-rotational transitions for 22 bands. The obtained centers and line intensities are compared in detail with the HITRAN2016 database and the AMES empirical list. Comparison with experimental data also shows that the accuracy of the variational calculation of the intensities of the spectral lines of the 32SO2 molecule depends on the vibrational quantum numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, AuweraJ. Vander, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The H-ITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).

    Article  ADS  Google Scholar 

  2. I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcislo, A. A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V. I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Cane, A. G. Csaszar, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, V.-M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N. N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu. Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H. S. P. Muller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tobias, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, AuweraJ. Vander, I. A. Vasilenko, A. A. Vigasin, G. L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, and S. N. Yurchenko, “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 277, 107949 (2022). https://doi.org/10.1016/j.jqsrt.2021.1079493

    Article  Google Scholar 

  3. T. Delahaye, R. Armante, N. A. Scott, N. Jacquinet-Husson, A. Chedin, L. Crepeau, C. Crevoisier, V. Douet, A. Perrin, A. Barbe, V. Boudon, A. Campargue, L. H. Coudert, V. Ebert, J.-M. Flaud, R. R. Gamache, D. Jacquemart, A. Jolly, F. Kwabia-Tchana, A. Kyuberis, G. Li, O. M. Lyulin, L. Manceron, S. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. Nikitin, V. I. Perevalov, C. Richard, E. Starikova, S. A. Tashkun, Vl. G. Tyuterev, Auwera J. Vander, B. Vispoel, A. Yachmenev, and S. Yurchenko, “The 2020 edition of the GEISA spectroscopic database,” J. Mol. Spectrosc. 380, 111510 (2021).

    Article  Google Scholar 

  4. E. K. Conway, I. E. Gordon, A. A. Kyuberis, O. L. Polyansky, J. Tennyson, and N. F. Zobov, “Calculated line lists for H2 16O and H2 18O with extensive comparisons to theoretical and experimental sources including the HITRAN2016 database,” J. Quant. Spectrosc. Radiat. Transfer 241, 106711 (2020). https://doi.org/10.1016/j.jqsrt.2019.106711

    Article  Google Scholar 

  5. J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Csaszar, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, A. C. Vandaele, and N. F. Zobov, “A database of water transitions from experiment and theory (IUPAC technical report),” Pure Appl. Chem. 86, 71–83 (2014).

    Article  Google Scholar 

  6. I. A. Vasilenko, O. V. Naumenko, and V.-M. Horneman, “Expert list of absorption lines of the SO2 molecule in the 2000–3000 cm–1 spectral region,” Atmos. Ocean. Opt. 33 (5), 443–448 (2020). https://doi.org/10.1134/S1024856020050188

    Article  Google Scholar 

  7. R. Tóbiás, T. Furtenbacher, A. G. Császár, O. V. Naumenko, and B. Piorier, “Critical evaluation of measured rotational vibrational transitions of four sulphur isotopologues of S16O2,” J. Quant. Spectrosc. Radiat. Transfer 208, 152–163 (2018).

    Article  ADS  Google Scholar 

  8. I. Vasilenko, O. Naumenko, and V.-M. Horneman, http://www.hrms-bilbao2018.com/daily-program.html. Cited February 25, 2020.

  9. O. V. Naumenko, I. A. Vasilenko, and V.-M. Horneman, http://vesta.u-bourgogne.fr/hrms/Program/AbsBook-HRMS-26-HRefs.pdf. Cited February 25, 2020.

  10. D. Underwood, J. Tennyson, S. Yurchenko, X. Huang, D. Schwenke, T. Lee, S. Clausen, and A. Fateev, “Exo-Mol molecular line lists—XIV. The rotation-vibration spectrum of hot SO2,” Mon. Not. Royal Astron. Soc. 459, 3890–3899 (2016).

    Article  ADS  Google Scholar 

  11. O. N. Ulenikov, E. S. Bekhtereva, V.-M. Horneman, S. Alanko, and O. V. Gromova, “High resolution study of the 3ν1 band of SO2,” J. Mol. Spectrosc. 255, 111–121 (2009).

    Article  ADS  Google Scholar 

  12. W. J. Lafferty, A. S. Pine, G. Hilpert, R. L. Sams, and J.-M. Flaud, “The ν1 + ν3 and 2ν1 + ν3 band systems of SO2: Line positions and intensities,” J. Mol. Spectrosc. 176, 280–286 (1996).

    Article  ADS  Google Scholar 

  13. A. Perrin, J.-M. Flaud, A. Goldman, C. Camy-Peyret, W. J. Lafferty, Ph. Arcas, and C. P. Rinsland, “NO2 and SO2 line parameters: 1996 HITRAN update and new results,” J. Quant. Spectrosc. Radiat. Transfer 60, 839–850 (1998). https://doi.org/10.1016/S0022-4073(98)00086-7

    Article  ADS  Google Scholar 

  14. M. Chu, S. J. Wetzel, W. J. Lafferty, A. Perrin, J.‑M. Flaud, P. Arcas, and G. Guelachvili, “Line intensities for the 8-μm bands of SO2,” J. Mol. Spectrosc. 189, 55–63 (1998). https://doi.org/10.1006/jmsp.1997.7517

    Article  ADS  Google Scholar 

  15. W. J. Lafferty, A. S. Pine, J.-M. Flaud, and C. Camy-Peyret, “The 2ν3 band of 32S16O2: Line positions and intensities,” J. Mol. Spectrosc. 157, 499–511 (1993). https://doi.org/10.1006/jmsp.1993.1039

    Article  ADS  Google Scholar 

  16. W. J. Lafferty, G. T. Fraser, A. S. Pine, J.-M. Flaud, C. Camy-Peyret, V. Dana, J.-Y. Mandin, A. Barbe, J. J. Plateaux, and S. Bouazza, “The 3ν3 band of 32S16O2: Line positions and intensities,” J. Mol. Spectrosc. 154, 51–60 (1992). https://doi.org/10.1016/0022-2852(92)90028-M

    Article  ADS  Google Scholar 

  17. B. Sumpf, “Line intensity and self-broadening investigations in the ν1 and ν3 bands of SO2,” J. Mol. Struct. 599, 39–49 (2001). https://doi.org/10.1016/S0022-2860(01)00836-5

    Article  ADS  Google Scholar 

  18. J. Henningsen and J. Hald, “Quantitative analysis of dilute mixtures of SO2 in N2 at 7.4 μm,” J. Appl. Phys. B 76, 441–449 (2003). https://doi.org/10.1007/s00340-003-1140-8

    Article  ADS  Google Scholar 

  19. L. Joly, V. Zeninari, B. Parvitte, D. Weidmann, D. Courtois, Y. Bonetti, T. Aellen, M. Beck, J. Faist, and D. Hofstetter, " Spectroscopic study of the ν1 band of SO2 using a continuous wave DFB QCL at 9.1 μm," Appl. Phys. B: Lasers. Opt. 77, 703–706 (2003). https://doi.org/10.1007/s00340-003-1310-8

    Article  ADS  Google Scholar 

  20. V. Zeninari, L. Joly, B. Grouiez, B. Parvitte, and A. Barbe, “Study of SO2 line parameters with a quantum cascade laser spectrometer around 1090 cm−1: Comparison with calculations of the ν1 and ν1 + ν2 − ν2 bands of 32SO2 and the ν1 band of 34SO2,” J. Quant. Spectrosc. Radiat. Transfer 105, 312–325 (2007). https://doi.org/10.1016/j.jqsrt.2006.11.006

    Article  ADS  Google Scholar 

  21. J. Henningsen, A. Barbe, and M.-R. De Backer-Barilly, “Revised molecular parameters for 32SO2 and 34SO2 from high resolution study of the infrared spectrum in the 7–8 μm wavelength region,” J. Quant. Spectrosc. Radiat. Transfer 109, 2491–2510 (2008). https://doi.org/10.1016/j.jqsrt.2008.04.001

    Article  ADS  Google Scholar 

  22. N. Tasinato, P. Charmet, P. Stoppa, S. Giorgianni, and G. Buffa, “Spectroscopic measurements of SO2 line parameters in the 9.2 μm atmospheric region and theoretical determination of self-broadening coefficients,” J. Chem. Phys. 132, 044315 (2010). https://doi.org/10.1063/1.3299274

    Article  ADS  Google Scholar 

  23. N. Tasinato, A. P. Charmet, P. Stoppa, G. Buffa, and C. Puzzarini, “A complete listing of sulfur dioxide self-broadening coefficients for atmospheric applications by coupling infrared and microwave spectroscopy to semiclassical calculations,” J. Quant. Spectrosc. Radiat. Transfer 130, 233–248 (2013). https://doi.org/10.1016/j.jqsrt.2013.03.015

    Article  ADS  Google Scholar 

  24. B. Grouiez, B. Parvitte, L. Joly, D. Courtois, and V. Zeninari, “Comparison of a quantum cascade laser used in both cw and pulsed modes. Application to the study of SO2 lines around 9 μm,” Appl. Phys. B 90, 177–186 (2008). https://doi.org/10.1007/s00340-007-2857-6

    Article  ADS  Google Scholar 

  25. N. Tasinato, A. P. Charmet, P. Stoppa, G. Buffa, and P. Puzzarini, “A complete listing of sulfur dioxide self-broadening coefficients for atmospheric applications by coupling infrared and microwave spectroscopy to semiclassical calculations,” J. Quant. Spectrosc. Radiat. Transfer 130, 233–248 (2013). https://doi.org/10.1016/j.jqsrt.2013.03.015

    Article  ADS  Google Scholar 

  26. G. Ceselin, N. Tasinato, C. Puzzarini, A. P. Charmet, P. Stoppa, and S. Giorgianni, “Collision induced broadening of ν1 band and ground state spectral lines of sulfur dioxide perturbed by N2 and O2,” J. Quant. Spectrosc. Radiat. Transfer 198, 155–163 (2017). https://doi.org/10.1016/j.jqsrt.2017.05.013

    Article  ADS  Google Scholar 

  27. B. Sumpf, “Line intensity and self-broadening investigations in the 19 μm ν2 band of SO2,” Spectrochim. Acta A 55, 1931–1939 (1999).

    Article  ADS  Google Scholar 

  28. O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, M. Quack, G. Ch. Mellau, C. Sydow, and S. Bauerecker, “Extended analysis of the high resolution FTIR spectrum of 32S16O2 in the region of the ν2 band: Line positions, strengths, and pressure broadening widths,” J. Quant. Spectrosc. Radiat. Transfer 210, 141–155 (2018). https://doi.org/10.1016/j.jqsrt.2018.02.010

    Article  ADS  Google Scholar 

  29. O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, V.‑M. Horneman, C. Sydow, and S. Bauerecker, “High resolution FTIR spectroscopy of sulfur dioxide in the 1550–1950 cm−1 region: First analysis of the bands of 32S16O18O and experimental line intensities of ro-vibrational transitions in the bands of 32S16O2, 34S16O2, 32S18O2, and 32S16O18O,” J. Quant. Spectrosc. Radiat. Transfer 203, 377–391 (2017). https://doi.org/10.1016/j.jqsrt.2017.02.005

    Article  ADS  Google Scholar 

  30. Y. G. Borkov, O. M. Lyulin, T. M. Petrova, A. M. Solodov, A. A. Solodov, V. M. Deichuli, and V. I. Perevalov, “CO2-broadening and shift coefficients of sulfur dioxide near 4 μm,” J. Quant. Spectrosc. Radiat. Transfer 225, 119–124 (2019).

    Article  ADS  Google Scholar 

  31. X. Huang, D. W. Schwenke, and T. J. Lee, “Quantitative validation of AMES IR intensity and new line lists for 32/33/34SO2, 32S18O2 and 16O32S18O,” J. Quant. Spectrosc. Radiat. Transfer 225, 327–336 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

Research by I.A. Vasilenko and O.V. Naumenko was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Vasilenko, O. V. Naumenko or V.-M. Horneman.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilenko, I.A., Naumenko, O.V. & Horneman, VM. Expert List of Absorption Lines of the 32S16O2 Molecule in the 0–4200 cm–1 Spectral Region. Atmos Ocean Opt 36, 199–206 (2023). https://doi.org/10.1134/S102485602303020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602303020X

Keywords:

Navigation