Skip to main content
Log in

Experiment on Recording Ozone Absorption Transitions to 3A2 Triplet Electronic State by High-Sensitivity Cavity Ring-Down Spectroscopy in the Range 9350–10 000 cm−1

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The results of the highly sensitive recording of the absorption spectrum for the Wulf band series in the near-infrared range 9350–10 000 cm–1, corresponding to the transitions from the ground to an excited triplet electronic state of the ozone molecule, are discussed. For the first time, the ozone spectrum in the range above the main molecular dissociation threshold was recorded using a continuous wave cavity ring-down spectrometer (cw-CRDS). The spectrometer provided sensitivity on the order of 1 × 10–10 cm–1 for the absorption coefficient. The measurement technique, ozone generation, and control of its concentration are described. A comparison with previously calculated theoretical spectra of the singlet-triplet bands 3A2(000) ← X1A1(000), 3A2(010) ← X1A1(000), and 3A2(010) ← X1A1(010) is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. W. Barnes, C. E. Williamson, R. M. Lucas, S. A. Robinson, S. Madronich, N. D. Paul, J. F. Bornman, A. F. Bais, B. Sulzberger, S. R. Wilson, A. L. Andrady, R. L. McKenzie, P. J. Neale, A. T. Austin, G. H. Bernhard, K. R. Solomon, R. E. Neale, P. J. Young, M. Norval, L. E. Rhodes, S. Hylander, K. C. Rose, J. Longstreth, P. J. Aucamp, C. L. Ballare, R. M. Cory, S. D. Flint, F. R. de Gruijl, D. P. Hader, A. M. Heikkila, M. A. K. Jansen, K. K. Pandey, T. M. Robson, C. A. Sinclair, S. A. Wangberg, R. C. Worrest, S. Yazar, A. R. Young, and R. G. Zepp, “Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future,” Fac. Sci. Med. Heal 2 (7) Part B, 1 (2019). https://doi.org/10.1038/s41893-019-0314-2

  2. W. T. Rawlins, G. E. Caledonia, and R. A. Armstrong, “Dynamics of vibrationally excited ozone formed by three-body recombination. II. Kinetics and mechanism,” J. Chem. Phys. 87 (9), 5209 (1998). https://doi.org/10.1063/1.453689

    Article  ADS  Google Scholar 

  3. K. Luther, K. Oum, and J. Troe, “The role of the radical-complex mechanism in the ozone recombination/dissociation reaction,” Phys. Chem. Chem. Phys. 7 (14), 2764–2770 (2005). https://doi.org/10.1039/B504178C

    Article  Google Scholar 

  4. M. Mirahmadi, J. Perez-Rios, O. Egorov, V. Tyuterev, and V. Kokoouline, “Ozone formation in ternary collisions: Theory and experiment reconciled,” Phys. Rev. Lett. 128 (10), 108501 (2022). https://doi.org/10.1103/PhysRevLett.128.108501

    Article  ADS  Google Scholar 

  5. A. Barbe, S. Mikhailenko, E. Starikova, and V. Tyuterev, “High resolution infrared spectroscopy in support of ozone atmospheric monitoring and validation of the potential energy function,” Moleculules 27 (3), 911 (2022). https://doi.org/10.3390/MOLECULES27030911

    Article  Google Scholar 

  6. H. Wenz, W. Demtroder, and J. M. Flaud, “Highly sensitive absorption spectroscopy of the ozone molecule around 1.5 μm,” J. Mol. Spectrosc. 209 (2), 267–277 (2001). https://doi.org/10.1006/JMSP.2001.8430

    Article  ADS  Google Scholar 

  7. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997). https://doi.org/10.1016/S0009-2614(96)01351-6

    Article  ADS  Google Scholar 

  8. S. Kassi and A. Campargue, “Cavity ring down spectroscopy with 5 × 10−13 cm−1 sensitivity,” J. Chem. Phys. 137 (23), 234201 (2012). https://doi.org/10.1063/1.4769974

    Article  ADS  Google Scholar 

  9. D. A. Long, A. J. Fleisher, S. Wojtewicz, and J. T. Hodges, “Quantum-noise-limited cavity ring-down spectroscopy,” Appl. Phys. B: Lasers Opt. 115 (2), 149–153 (2014). https://doi.org/10.1007/S00340-014-5808-Z

    Article  ADS  Google Scholar 

  10. A. Campargue, A. Barbe, M. R. De Backer-Barilly, V. G. Tyuterev, and S. Kassi, “The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm–1: New observations and exhaustive review,” Phys. Chem. Chem. Phys. 10 (20), 2925–2946 (2008). https://doi.org/10.1039/b719773j

    Article  Google Scholar 

  11. D. Mondelain, A. Campargue, S. Kassi, A. Barbe, E. Starikova, M. R. De Backer, and V. G. Tyuterev, “The CW-CRDS spectra of the 16O/18O isotopologues of ozone between 5930 and 6340 cm−1. Part 1: 16O16O18O,” J. Quant. Spectrosc. Radiat. Transfer 116, 49–66 (2013). https://doi.org/10.1016/j.jqsrt.2012.10.023

    Article  ADS  Google Scholar 

  12. A. Campargue, S. Kassi, D. Mondelain, A. Barbe, E. Starikova, M. R. De Backer, and V. G. Tyuterev, “Detection and analysis of three highly excited vibrational bands of 16O3 by CW-CRDS near the dissociation threshold,” J. Quant. Spectrosc. Radiat. Transfer 152, 84–93 (2015). https://doi.org/10.1016/j.jqsrt.2014.10.019

    Article  ADS  Google Scholar 

  13. S. Vasilchenko, A. Barbe, E. Starikova, S. Kassi, D. Mondelain, A. Campargue, and V. Tyuterev, “Detection and assignment of ozone bands near 95% of the dissociation threshold: Ultrasensitive experiments for probing potential energy function and vibrational dynamics,” Phys. Rev. A: 102 (5), 052804 (2020). https://doi.org/10.1103/PhysRevA.102.052804

    Article  ADS  Google Scholar 

  14. S. Vasilchenko, A. Barbe, E. Starikova, S. Kassi, D. Mondelain, A. Campargue, and V. Tyuterev, “Cavity-ring-down spectroscopy of the heavy ozone isotopologue 18O3: Analysis of a high energy band near 95% of the dissociation threshold,” J. Quant. Spectrosc. Radiat. Transfer 278, 108017 (2022).https://doi.org/10.1016/J.JQSRT.2021.108017

  15. B. Rusic, Unpublished results obtained from active thermochemical tables (ATcT) based on the Core (Argonne). 2010 Thermochemical Network version 1.110. URL: https://atct.anl.gov/. Cited September 6, 2022.

  16. F. Holka, P. G. Szalay, T. Muller, and V. G. Tyuterev, “Toward an improved ground state potential energy surface of ozone,” J. Phys. Chem. A 114 (36), 9927–9935 (2010). https://doi.org/10.1021/jp104182q

    Article  Google Scholar 

  17. V. G. Tyuterev, R. V. Kochanov, S. A. Tashkun, F. Holka, and P. G. Szalay, “New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range,” J. Chem. Phys. 139 (13), 134307 (2013). https://doi.org/10.1063/1.4821638

    Article  ADS  Google Scholar 

  18. R. Dawes, P. Lolur, A. Li, B. Jiang, and H. Guo, “Communication: An accurate global potential energy surface for the ground electronic state of ozone,” J. Chem. Phys. 139 (20), 201103 (2013). https://doi.org/10.1063/1.4837175

    Article  ADS  Google Scholar 

  19. V. Kokoouline, D. Lapierre, A. Alijah, and V. Tyuterev, “Localized and delocalized bound states of the main isotopologue 48O3 and of 18O-enriched 50O3 isotopomers of the ozone molecule near the dissociation threshold,” Phys. Chem. Chem. Phys. 22 (28), 15885–15899 (2020). https://doi.org/10.1039/D0CP02177F

    Article  Google Scholar 

  20. O. R. Wulf and L. S. Deming, “The effect of visible solar radiation on the calculated distribution of atmospheric ozone,” Terr. Magn. Atmos. Electr. 41 (4), 375–378 (1936). https://doi.org/10.1029/TE041I004P00375

    Article  Google Scholar 

  21. O. R. Wulf and L. S. Deming, “The distribution of atmospheric ozone in equilibrium with solar radiation and the rate of maintenance of the distribution,” Terr. Magn. Atmos. Electr. 42 (2), 195–202 (1937). https://doi.org/10.1029/TE042I002P00195

    Article  Google Scholar 

  22. S. M. Anderson and K. Mauersberger, “Ozone absorption spectroscopy in search of low-lying electronic states,” J. Geophys. Res. 100 (D2), 3033 (1995). https://doi.org/10.1029/94JD03003

    Article  ADS  Google Scholar 

  23. J. Gunther, S. M. Anderson, G. Hilpert, and K. Mauersberger, “Rotational structure in the absorption spectra of 18O3 and 16O3 near 1 μm: A comparative study of the 3A2 and 3B2 states,” J. Chem. Phys. 108 (13), 5449 (1998). https://doi.org/10.1063/1.475933

    Article  ADS  Google Scholar 

  24. S. F. Deppe, U. Wachsmuth, B. Abel, M. Bittererova, S. Y. Grebenshchikov, R. Siebert, and R. Schinke, “Resonance spectrum and dissociation dynamics of ozone in the 3B2 electronically excited state: Experiment and theory,” J. Chem. Phys. 121 (11), 5191 (2004). https://doi.org/10.1063/1.1778381

    Article  ADS  Google Scholar 

  25. D. Xie, H. Guo, and K. A. Peterson, “Ab initio characterization of low-lying triplet state potential-energy surfaces and vibrational frequencies in the Wulf band of ozone,” J. Chem. Phys. 115 (22), 10404–10408 (2001). https://doi.org/10.1063/1.1417502

    Article  ADS  Google Scholar 

  26. S. Y. Grebenshchikov, Z. W. Qu, H. Zhu, and R. Schinke, “Spin-orbit mechanism of predissociation in the Wulf band of ozone,” J. Chem. Phys. 125 (2), 021102 (2006). https://doi.org/10.1063/1.2219444

    Article  ADS  Google Scholar 

  27. S. Y. Grebenshchikov, Z. W. Qu, H. Zhu, and R. Schinke, “New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands,” Phys. Chem. Chem. Phys. 9 (17), 2044–2064 (2007). https://doi.org/10.1039/b701020f

    Article  Google Scholar 

  28. D. Lapierre, A. Alijah, R. Kochanov, V. Kokoouline, and V. Tyuterev, “Lifetimes and wave functions of ozone metastable vibrational states near the dissociation limit in a full-symmetry approach,” Phys. Rev. A 94 (4), 042514 (2016). https://doi.org/10.1103/PhysRevA.94.042514

    Article  ADS  Google Scholar 

  29. I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcislo, A. A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V. I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Cane, A. G. Csaszar, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, V. M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N. N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Y. Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H. S. P. Muller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tobias, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, Auwera J. Vander, I. A. Vasilenko, A. A. Vigasin, G. L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, and S. N. Yurchenko, “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 277, 107949 (2022). https://doi.org/10.1016/J.JQSRT.2021.107949

    Article  Google Scholar 

  30. T. Delahaye, R. Armante, N. A. Scott, N. Jacquinet-Husson, A. Chedin, L. Crepeau, C. Crevoisier, V. Douet, A. Perrin, A. Barbe, V. Boudon, A. Campargue, L. H. Coudert, V. Ebert, J. M. Flaud, R. R. Gamache, D. Jacquemart, A. Jolly, F. Kwabia-Tchana, A. Kyuberis, G. Li, O. M. Lyulin, L. Manceron, S. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. Nikitin, V. I. Perevalov, C. Richard, E. Starikova, S. A. Tashkun, V. G. Tyuterev, Auwera J. Vander, B. Vispoel, A. Yachmenev, and S. Yurchenko, “The 2020 edition of the GEISA spectroscopic database,” J. Mol. Spectrosc. 380, 111510 (2021). https://doi.org/10.1016/J.JMS.2021.111510

    Article  Google Scholar 

  31. A. Barbe, S. Mikhailenko, E. Starikova, and V. Tyuterev, “Infrared spectra of 16O3 in the 900–5600 cm−1 range revisited: Empirical corrections to the S&MPO and HITRAN2020 line lists,” J. Quant. Spectrosc. Radiat. Transfer 276, 107936 (2021). https://doi.org/10.1016/J.JQSRT.2021.107936

    Article  Google Scholar 

  32. D. Albert, B. K. K. Antony, Y. A. Ba, Y. L. Babikov, P. Bollard, V. Boudon, F. Delahaye, G. Del Zanna, M. S. Dimitrijevic, B. J. Drouin, M.-L. L. Dubernet, F. Duensing, M. Emoto, C. P. P. Endres, A. Z. Fazliev, J.-M. M. Glorian, I. E. Gordon, P. Gratier, C. Hill, D. Jevremovic, C. Joblin, D.-H. H. Kwon, R. V. Kochanov, E. Krishnakumar, G. Leto, P. A. Loboda, A. A. Lukashevskaya, O. M. Lyulin, B. P. Marinkovic, A. Markwick, T. Marquart, N. J. Mason, C. Mendoza, T. J. Millar, N. Moreau, S. V. Morozov, T. Moller, H. S. P. P. Muller, G. Mulas, I. Murakami, Y. Pakhomov, P. Palmeri, J. Penguen, V. I. Perevalov, N. Piskunov, J. Postler, A. I. Privezentsev, P. Quinet, Y. Ralchenko, Y.-J. J. Rhee, C. Richard, G. Rixon, L. S. Rothman, E. Roueff, T. Ryabchikova, S. Sahal-Brechot, P. Scheier, P. Schilke, S. Schlemmer, K. W. Smith, B. Schmitt, I. Y. Skobelev, V. A. Sreckovic, E. Stempels, S. A. Tashkun, J. Tennyson, V. G. Tyuterev, C. Vastel, V. Vujcic, V. Wakelam, N. A. Walton, C. Zeippen, and C. M. Zwolf, “A decade with VAMDC: Results and ambitions,” Atoms 8 (4), 76 (2020).

    Article  ADS  Google Scholar 

  33. S. M. Anderson, J. Morton, and K. Mauersberger, “Near-infrared absorption spectra of 16O3 and 18O3: Adiabatic energy of the 1A2 state?,” J. Chem. Phys. 93 (6), 3826 (1990). https://doi.org/10.1063/1.458767

    Article  ADS  Google Scholar 

  34. S. M. Anderson, P. Hupalo, and K. Mauersberger, “Rotational structure in the near-infrared absorption spectrum of ozone,” J. Chem. Phys. 99 (1), 737 (1993). https://doi.org/10.1063/1.465747

    Article  ADS  Google Scholar 

  35. A. Banichevich, S. D. Peyerimhoff, and F. Grein, “Potential energy surfaces of ozone in its ground state and in the lowest-lying eight excited states,” Chem. Phys. 178 (1-3), 155–188 (1993). https://doi.org/10.1016/0301-0104(93)85059-H

    Article  Google Scholar 

  36. M. Braunstein and R. T. Pack, “Simple theory of diffuse structure in continuous ultraviolet spectra of polyatomic molecules. III. Application to the Wulf–Chappuis band system of ozone,” J. Chem. Phys. 96 (9), 6378 (1992). https://doi.org/10.1063/1.462632

    Article  ADS  Google Scholar 

  37. B. Minaev and H. Agren, “The interpretation of the Wulf absorption band of ozone,” Chem. Phys. Lett. 217 (5-6), 531–538 (1994). https://doi.org/10.1016/0009-2614(93)E1445-M

    Article  ADS  Google Scholar 

  38. A. J. Bouvier, D. Inard, V. Veyret, B. Bussery, R. Bacis, S. Churassy, J. Brion, J. Malicet, and R. H. Judge, “Contribution to the analysis of the 3A2 ← X1A1 “Wulf” transition of ozone by high-resolution fourier transform spectrometry,” J. Mol. Spectrosc. 190 (2), 189–197 (1998). https://doi.org/10.1006/jmsp.1998.7578

    Article  ADS  Google Scholar 

  39. A. J. Bouvier, V. Veyret, I. Russier, D. Inard, S. Churassy, R. Bacis, J. Brion, J. Malicet, and R. H. Judge, “Comparative rotational analysis of the 000 bands of the 3A2 ← X1A1 Wulf transition for the isotopomers 16O3 and 18O3 of ozone by high resolution Fourier transform spectrometry,” Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 55 (14), 2811–2821 (1999). https://doi.org/10.1016/S1386-1425(99)00096-7

    Article  Google Scholar 

  40. A. J. Bouvier, G. Wannous, S. Churassy, R. Bacis, J. Brion, J. Malicet, and R. H. Judge, “Spectroscopy and predissociation of the 3A2 electronic state of ozone 16O3 and 18O3 by high resolution Fourier transform spectrometry,” Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 57 (3), 561–579 (2001). https://doi.org/10.1016/S1386-1425(00)00409-1

    Article  Google Scholar 

  41. D. Inard, A. J. Bouvie, R. Baci, S. Churass, F. Boh, J. Brio, J. Malice, and M. Jaco, “Absorption cross-sections and lifetime of the 3A2 "metastable” state of ozone," Chem. Phys. Lett. 287 (5-6), 515–524 (1998). https://doi.org/10.1016/S0009-2614(98)00200-0

    Article  ADS  Google Scholar 

  42. U. Wachsmut and B. Abel, “Linewidths and line intensity measurements in the weak 3A2(000) ← X̃1A1(000) band of ozone by pulsed cavity ringdown spectroscopy,” J. Geophys. Res. D: Atmos. 108 (15), 4473 (2003). https://doi.org/10.1029/2002jd003126

    Article  ADS  Google Scholar 

  43. S. Vasilchenko, D. Mondelain, S. Kassi, and A. Campargue, “Predissociation and pressure dependence in the low frequency far wing of the Wulf absorption band of ozone near 1.2 μm,” J. Quant. Spectrosc. Radiat. Transfer 272, 107678 (2021). https://doi.org/10.1016/j.jqsrt.2021.107678

    Article  Google Scholar 

  44. O. Egorov, R. R. Valiev, T. Kurten, and V. Tyuterev, “Franck–Condon factors and vibronic patterns of singlet-triplet transitions of 16O3 molecule falling near the dissociation threshold and above,” J. Quant. Spectrosc. Radiat. Transfer 273, 107834 (2021). https://doi.org/10.1016/J.JQSRT.2021.107834

    Article  Google Scholar 

  45. S. Vasilchenko, S. N. Mikhailenko, and A. Campargue, “Water vapor absorption in the region of the oxygen A-band near 760 nm,” J. Quant. Spectrosc. Radiat. Transfer 275, 107847 (2021). https://doi.org/10.1016/J.JQSRT.2021.107847

    Article  Google Scholar 

  46. M. Konefal, S. Kassi, D. Mondelain, and A. Campargue, “High sensitivity spectroscopy of the O2 band at 1.27 μm: (I) Pure O2 line parameters above 7920 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 241, 106653 (2020). https://doi.org/10.1016/j.jqsrt.2019.106653

    Article  Google Scholar 

  47. A. Campargue, S. N. Mikhailenko, B. G. Lohan, E. V. Karlovets, D. Mondelain, and S. Kassi, “The absorption spectrum of water vapor in the 1.25 μm atmospheric window (7911–8337 cm−1),” J. Quant. Spectrosc. Radiat. Transfer 157, 135–152 (2015). https://doi.org/10.1016/j.jqsrt.2015.02.011

    Article  ADS  Google Scholar 

  48. S. Kassi, A. Campargue, D. Mondelain, and H. Tran, “High pressure cavity ring down spectroscopy: Application to the absorption continuum of CO2 near 1.7 μm,” J. Quant. Spectrosc. Radiat. Transfer 167, 97–104 (2015). https://doi.org/10.1016/j.jqsrt.2015.08.014

    Article  ADS  Google Scholar 

  49. D. D. Tran, H. Tran, S. Vasilchenko, S. Kassi, A. Campargue, and D. Mondelain, “High sensitivity spectroscopy of the O2 band at 1.27 μm: (II) air-broadened line profile parameters,” J. Quant. Spectrosc. Radiat. Transfer 240 (2020). https://doi.org/10.1016/j.jqsrt.2019.106673

  50. M. Griggs, “Absorption coefficients of ozone in the ultraviolet and visible regions,” J. Chem. Phys. 49 (2), 857–859 (1968). https://doi.org/10.1063/1.1670152

    Article  ADS  Google Scholar 

  51. V. G. Tyuterev, R. V. Kochanov, and S. A. Tashkun, “Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands,” J. Chem. Phys. 146, 064304–1 (2017). https://doi.org/10.1063/1.4973977

    Article  ADS  Google Scholar 

  52. O. V. Egorov, “Diabatic potential energy surfaces of the interacting triplet states 3 A 2 and 3 B 1 of the ozone molecule,” Opt. Atmos. Okeana 36 (3), 161–169 (2023). https://doi.org/10.15372/AOO20230301

    Article  Google Scholar 

  53. D. Mondelain, R. Jost, S. Kassi, R. H. Judge, V. Tyuterev, and A. Campargue, “Predissociation and spectroscopy of the 3A2(000) state of 18O3 from CRDS spectra of the 3A2(000) ← X1A1(110) hot band near 7900 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 113 (11), 840–849 (2012). https://doi.org/10.1016/j.jqsrt.2012.01.015

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 19-12-00171-P).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. S. Vasilchenko, O. V. Egorov or V. G. Tyuterev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilchenko, S.S., Egorov, O.V. & Tyuterev, V.G. Experiment on Recording Ozone Absorption Transitions to 3A2 Triplet Electronic State by High-Sensitivity Cavity Ring-Down Spectroscopy in the Range 9350–10 000 cm−1. Atmos Ocean Opt 36, 191–198 (2023). https://doi.org/10.1134/S1024856023030193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023030193

Keywords:

Navigation