Skip to main content
Log in

Experimental Determination of the Laser Radiation Extinction Coefficient for Inhomogeneous Sea Water in the Subsurface Layer from Airborne Polarization Lidar Signals

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Results of experimental determination of the laser radiation extinction index by the gradient method from the depth profiles of the airborne polarization lidar return signal power for clear and coastal sea water in the subsurface layer are presented. Based on synchronous measurements of the polarized and depolarized signal components with the “Makrel” lidar operating at a wavelength of 532 nm, laser radiation extinction coefficients were estimated. It has been experimentally demonstrated that the polarized and depolarized lidar return signal components have different seawater extinction indices, and the difference can reach several ten percent. The depth profiles of the laser radiation extinction indices retrieved from these signal components for two series of lidar measurements are given. Such an integrated approach expands the possibilities of remote hydrooptical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. M. Levin and T. M. Radomyslskaya, “Estimate of water inherent optical properties from Secchi depth,” Izv., Atmos. Ocean. Phys. 48 (2), 214–221 (2012).

    Article  Google Scholar 

  2. D. I. Glukhovets, P. A. Salyuk, S. V. Sheberstov, S. V. Vazyulya, I. V. Saling, and I. E. Stepochkin, “Retrieval of the full complex of optical characteristics for heat content assessing in the southern part of the Barents Sea in June 2021,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 18 (5), 214–225 (2021).

    Article  Google Scholar 

  3. J. L. Irish, J. K. McClung, and W. J. Lillycrop, “Airborne lidar bathymetry—the SHOALS system,” Int. Navigation Assoc. PIANC Bull. 103, 43–53 (2000).

    Google Scholar 

  4. G. C. Guenther, M. Brooks, and P. E. LaRocque, “New capabilities of the 'Shoals' airborne lidar bathymetry,” Remote Sens. Environ. 73 (2), 247–255 (2000).

    Article  ADS  Google Scholar 

  5. A. I. Potekaev, A. A. Lisenko, and V. S. Shamanaev, “Statistical analysis of the potential of a bathymetric lidar with time-of-flight SPAD matrix photodetector,” Izv. Vyssh. Ucheb. Zaved. Fiz. 62 (9), 165–170 (2019).

    Article  Google Scholar 

  6. A. A. Lisenko, A. I. Potekaev, and V. S. Shamanaev, “Statistical estimates of lidar signals reflected from the ocean bottom, using a lidar equipped with a photodetector array,” Russ. Phys. J. 60 (6), 1056–1063 (2017).

    Article  Google Scholar 

  7. M. R. Roddewig, N. J. Pust, J. H. Churnside, and J. A. Shaw, “Dual polarization airborne lidar for freshwater fisheries management and research,” Opt. Eng. 56, 031221 (2017).

    Article  ADS  Google Scholar 

  8. J. H. Churnside, J. J. Wilson, and V. V. Tatarskii, “Airborne lidar for fisheries application,” Opt. Eng. 40 (3), 406–414 (2001).

    Article  ADS  Google Scholar 

  9. V. S. Shamanaev, “Detection of schools of marine fish using polarization laser sensing,” Atmos. Ocean. Opt. 31 (4), 358–364 (2018).

    Article  Google Scholar 

  10. J. H. Churnside, R. D. Marchbanks, J. H. Lee, J. A. Shaw, A. Weidmann, and P. L. Donaghay, “Airborne lidar detection and characterization of internal waves in a shallow fjord,” J. Appl. Remote Sens. 6, 3611 (2012).

    Article  ADS  Google Scholar 

  11. I. Leifer, W. J. Lehr, D. S. Simecek-Beatty, E. Bradley, R. Clark, Hu. Yongxiang, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).

    Article  ADS  Google Scholar 

  12. H. Liu, P. Chen, Z. Mao, P. Delu, and Y. He, “Subsurface Plankton layers observed from airborne lidar in Sanya Bay, South China Sea,” Opt. Express 26, 29134–29147 (2018).

    Article  ADS  Google Scholar 

  13. J. H. Churnside and R. D. Marchbanks, “Subsurface plankton layers in the Arctic Ocean,” Geophys. Rev. Lett. 42, 4896–4902 (2015).

    Article  ADS  Google Scholar 

  14. J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Eng. 53 (5), 051405 (2014).

    Article  ADS  Google Scholar 

  15. J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt. 52 (4), 786–794 (2013).

    Article  ADS  Google Scholar 

  16. V. S. Shamanaev, ”Hydrooptical signals of an airborne polarization lidar for sensing of homogeneous sea water depth,” Atmos. Ocean. Opt. 33 (6), 616–621 (2020).

    Article  Google Scholar 

  17. A. A. Lisenko and V. S. Shamanaev, “Statistical estimates of the effect of the sea water scattering phase function on the characteristics of airborne hydrooptical lidar signals,” Russ. Phys. J. 64 (7), 1373–1380 (2021).

    Article  Google Scholar 

  18. J. H. Churnside and P. L. Donaghay, “Thin scattering layers observed by airborne lidar,” ICES J. Marine Sci. 66 (4), 778–789 (2009).

    Article  Google Scholar 

  19. V. S. Shamanaev, “Airborne lidars of the IAO SB RAS for sensing of optically dense media,” Atmos. Ocean. Opt. 28 (4), 359–365 (2015).

    Article  Google Scholar 

  20. T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters. SIO Ref. 72–78 (Institute of Oceanography, Visibility Laboratory, San Diego, 1972).

    Book  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics SB RAS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Shamanaev or A. A. Lisenko.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamanaev, V.S., Lisenko, A.A. Experimental Determination of the Laser Radiation Extinction Coefficient for Inhomogeneous Sea Water in the Subsurface Layer from Airborne Polarization Lidar Signals. Atmos Ocean Opt 36, 225–233 (2023). https://doi.org/10.1134/S102485602303017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602303017X

Keywords:

Navigation