Skip to main content
Log in

Validation of TROPOMI Satellite Measurements of the NO2 Content in the Troposphere and Stratosphere with Ground-Based Measurements at the Zvenigorod Scientific Station of A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Results of measurements of the tropospheric and stratospheric NO2 columns with the TROPOMI (Tropospheric Monitoring Instrument) aboard the Copernicus Sentinel-5P satellite in 2018–2020 are compared with the results of ground-based measurements at the Zvenigorod Scientific Station (ZSS) of A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The correspondence between the satellite and ground-based measurements is characterized by the difference between them, the linear correlation coefficients, and the regression coefficients. The dependences of these parameters on the season, cloud conditions, and the height of the atmospheric boundary layer are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. P. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere (Springer, Dordrecht, 2005).

    Book  Google Scholar 

  2. Atmospheric Chemistry and Global Change, Ed. by G.P. Brasseur, J.J. Orlando, and G.S. Tyndall (Oxford University Press, Oxford, 1999).

    Google Scholar 

  3. Y. Hu, C. Liu, R. Chen, H. Kan, M. Zhou, and B. Zhao, “Associations between total mortality and personal exposure to outdoor-originated NO2 in 271 Chinese cities,” Atmos. Environ. 246, 118170 (2021).

    Article  Google Scholar 

  4. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (John Wiley & Sons, Hoboken, New Jersey, 2006).

    Google Scholar 

  5. P. F. Levelt, J. Joiner, J. Tamminen, J. P. Veefkind, P. K. Bhartia, ZweerD. C. Stein, B. N. Duncan, D. G. Streets, H. Eskes, A. R. Van Der, C. McLinden, V. Fioletov, S. Carn, J. De Laat, M. DeLand, S. Marchenko, R. McPeters, J. Ziemke, D. Fu, X. Liu, K. Pickering, A. Apituley, G. G. Abad, A. Arola, F. Boersma, C. C. Miller, K. Chance, M. De Graaf, J. Hakkarainen, S. Hassinen, I. Ialongo, Q. Kleipool, N. Krotkov, C. Li, L. Lamsal, P. Newman, C. Nowlan, R. Suleiman, L. G. Tilstra, O. Torres, H. Wang, and K. Wargan, “The Ozone Monitoring Instrument: Overview of 14 years in space,” Atmos. Chem. Phys. 18, 5600–5745 (2018).

    Google Scholar 

  6. H. Eskes, J. van Geffen, F. Boersma, K.-U. Eichmann, A. Apituley, M. Pedergnana, M. Sneep, J. P. Veefkind, and D. Loyola, Sentinel-5 Precursor/TROPOMI Level 2 Product User Manual Nitrogendioxide—S5P L2 PUM Nitrogen dioxide. Issue 4.0.0, 2020-12-01—Released. https://sentinel.esa.int/docments/247904/ 2474726/Sentinel-5P-Level-2-Product-User-Manual-Nitrogen-Dioxide. Cited August 1, 2022.

  7. X. Zhao, D. Griffin, V. Fioletov, C. McLinden, A. Cede, M. Tiefengraber, M. Muller, K. Bognar, K. Strong, F. Boersma, H. Eskes, J. Davies, A. Ogyu, and S. C. Lee, “Assessment of the Quality of TROPO-MI High-Spatial-Resolution NO2 Data Products in the Greater Toronto Area,” Atmos. Meas. Tech. 13, 2131–2159 (2020). https://doi.org/10.5194/amt-13-2131-2020

    Article  Google Scholar 

  8. E. Dimitropoulou, F. Hendrick, G. Pinardi, M. M. Friedrich, A. Merlaud, F. Tack, H. De Longueville, C. Fayt, C. Hermans, Q. Laffineur, F. Fierens, and M. Van Roozendael, “Validation of TROPOMI tropospheric NO2 columns using dual-scan Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements in Uccle, Brussels,” Atmos. Meas. Tech. 13, 5165–5191 (2020). https://doi.org/10.5194/amt-13-5165-2020

    Article  Google Scholar 

  9. L. M. Judd, J. A. Al-Saadi, J. J. Szykman, L. C. Valin, S. J. Janz, M. G. Kowalewski, H. J. Eskes, J. P. Veefkind, A. Cede, M. Mueller, M. Gebetsberger, R. Swap, R. B. Pierce, C. R. Nowlan, G. G. Abad, A. Nehrir, and D. Williams, “Evaluating Sentinel-5P TROPOMI tropospheric NO2 column densities with airborne and Pandora spectrometers Near New York City and Long Island Sound,” Atmos. Meas. Tech. 13, 6113–6140 (2020). https://doi.org/10.5194/amt-13-6113-2020

    Article  Google Scholar 

  10. C. Wang, T. Wang, P. Wang, and V. Rakitin, “Comparison and validation of TROPOMI and OMI NO2 observations over China,” Atmosphere 11, 636 (2020). https://doi.org/10.3390/atmos11060636

    Article  ADS  Google Scholar 

  11. F. Tack, A. Merlaud, M.-D. Iordache, G. Pinardi, E. Dinitropoulou, H. Eskes, B. Bomans, P. Veefkind, and M. Van Roozendael, “Assessment of the TROPO-MI tropospheric NO2 product based on airborne APEX observations,” Atmos. Meas. Tech. 14, 615–646 (2021). https://doi.org/10.5194/amt-14-615-2021

    Article  Google Scholar 

  12. T. Verhoelst, S. Compernolle, G. Pinardi, J.-C. Lambert, H. J. Eskes, K.-U. Eichmann, A. M. Fjæraa, J. Granville, S. Niemeijer, A. Cede, M. Tiefengraber, F. Hendrick, A. Pazmino, A. Bais, A. Bazureau, K. F. Boersma, K. Bognar, A. Dehn, S. Donner, A. Elokhov, M. Gebetsberger, F. Goutail, M. G. de la Mora, A. Gruzdev, M. Gratsea, G. H. Hansen, H. Irie, N. Jepsen, Y. Kanaya, D. Karagkiozidis, R. Kivi, K. Kreher, P. F. Levelt, C. Liu, M. Muller, M. N. Comas, A. J. M. Piters, J.-P. Pommereau, T. Portafaix, O. Puentedura, R. Querel, J. Remmers, A. Richter, J. Rimmer, C. R. Cardenas, L. S. de Miguel, V. P. Sinyakov, K. Strong, M. Van Roozendael, P. Veefkind, T. Wagner, F. Wittrock, M. Y. Gonzalez, and C. Zehner, “Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks,” Atmos. Meas. Tech. 14, 481–510 (2021). https://doi.org/10.5194/amt-14-481-2021

    Article  Google Scholar 

  13. A. Lorente, K. F. Boersma, H. J. Eskes, J. P. Veefkind, J. H. G. M. van Geffen, M. B. de Zeeuw, H. A. C. Denier Van Der Gon, S. Beirle, and M. C. Krol, “Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI,” Sci. Rep. 9, 20033 (2019). https://doi.org/10.1038/s41598-019-56428-5

    Article  ADS  Google Scholar 

  14. D. E. Huber, A. L. Steiner, and E. A. Kort, “Daily cropland soil NOx emissions identified by TROPOMI and SMAP,” Geophys. Rev. Lett. 47 (2020). https://doi.org/10.1029/2020GL089949

  15. D. Griffin, C. A. McLinden, E. Dammers, C. Adams, C. E. Stockwell, C. Warneke, I. Bourgeois, J. Peischl, T. B. Ryerson, K. J. Zarzana, J. P. Rowe, R. Volkamer, C. Knote, N. Kille, T. K. Koenig, C. F. Lee, D. Rollins, P. S. Rickly, J. Chen, L. Fehr, A. Bourassa, D. Degenstein, K. Hayden, C. Mihele, S. N. Wren, J. Liggio, A. Akingunola, and P. Maka, “Biomass burning nitrogen dioxide emissions derived from space with TROP-OMI: Methodology and validation,” Atmos. Meas. Tech. 14, 7929–7957 (2021). https://doi.org/10.5194/amt-14-7929-2021

    Article  Google Scholar 

  16. X. Jin, Q. Zhu, and R. C. Cohen, “Direct estimates of biomass burning NOx emissions and lifetimes using daily observations from TROPOMI,” Atmos. Chem. Phys. 21, 15569–15587 (2021). https://doi.org/10.5194/acp-21-15569-2021

    Article  ADS  Google Scholar 

  17. D. K. Saw, S. Dey, H. Kaushal, and K. Lal, “Tracking NO2 emission from thermal power plants in North India using TROPOMI data,” Atmos. Environ. 259, 118514 (2021). https://doi.org/10.1016/j.atmosenv.2021.118514

    Article  Google Scholar 

  18. E. A. Marais, J. F. Roberts, R. G. Ryan, H. Eskes, K. F. Boersma, S. Choi, J. Joiner, N. Abuhassan, A. Redondas, M. Grutter, A. Cede, L. Gomez, and M. Navarro-Comas, “New observations of NO2 in the upper troposphere from TROPOMI,” Atmos. Meas. Tech. 14, 2389–2408 (2021). https://doi.org/10.5194/amt-14-2389-2021

    Article  Google Scholar 

  19. A. N. Gruzdev and A. S. Elokhov, “Validation of ozone monitoring instrument NO2 measurements using ground based NO2 measurements at Zvenigorod, Russia,” Int. J. Remote Sens. 31 (2), 497–511 (2010). https://doi.org/10.1080/01431160902893527

    Article  Google Scholar 

  20. A. N. Gruzdev and A. S. Elokhov, “Comparison of the results of ground-based and satellite (OMI) measurements of the NO2 contents in the stratosphere and troposphere over Zvenigorod: Sensitivity to cloud cover and tropospheric pollution,” Proc. SPIE—Int. Soc. Opt. Eng. 11916 (2021). https://doi.org/10.1117/12.2601814

  21. A. N. Gruzdev and A. S. Elokhov, “Comparison of the results of long-term OMI measurements of NO2 content in the stratosphere and troposphere with ground-based measurements,” Izv., Atmos. Ocean. Phys. 59 (1), 78–99 (2023).

  22. A. S. Elokhov and A. N. Gruzdev, “Nitrogen dioxide column content and vertical profile measurements at the Zvenigorod Research Station,” Izv., Atmos. Ocean. Phys. 36 (6), 763–777 (2000).

    Google Scholar 

  23. A. N. Gruzdev and A. S. Elokhov, “Variability of stratospheric and tropospheric nitrogen dioxide observed by visible spectrophotometer at Zvenigorod, Russia,” Int. J. Remote Sens. 32 (11), 3115–3127 (2011). https://doi.org/10.1080/01431161.2010.541524

    Article  Google Scholar 

  24. F. Hendrick, B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Maziere, F. Goutail, C. Hermans, J.‑C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, “Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons,” Atmos. Chem. Phys. 4 (8), 2091–2106 (2004).

    Article  ADS  Google Scholar 

  25. A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Merienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross section from 42.000 cm–1 to 10000 cm–1 (238–1000 nm) at 220 and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59 (3-5), 171–184 (1998).

    Article  ADS  Google Scholar 

  26. A. N. Gruzdev and A. S. Elokhov, “Validating NO2 measurements in the vertical atmospheric column with the OMI instrument aboard the EOS Aura satellite against ground-based measurements at the Zvenigorod Scientific Station,” Izv., Atmos. Ocean. Phys. 45 (4), 444–455 (2009).

    Article  Google Scholar 

  27. V. S. Rakitin, N. F. Elansky, A. I. Skorokhod, A. V. Dzhola, A. V. Rakitina, A. V. Shilkin, N. S. Kirillova, and A. V. Kazakov, “Long-term tendencies of carbon monoxide in the atmosphere of the Moscow Megapolis,”, ” Izv., Atmos. Ocean. Phys. 57 (1), 116–125 (2021).

    Article  Google Scholar 

  28. A. I. Skorohod, V. S. Rakitin, and N. S. Kirillova, “Impact of Covid-19 pandemic preventing measures and meteorological conditions on the atmospheric air composition in Moscow in 2020,” Russ. Meteorol. Hydrol. 47 (3), 183–190 (2022).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The TROPOMI NO2 measurements were provided by the European Space Agency. The ABL height calculations are based on the meteorological fields of the Global Data Assimilation System. The authors are grateful to the reviewer for useful comments.

Funding

The work was supported by the Russian Science Foundation (project no. 20-17-00200, satellite data processing and preparation) and the Russian Foundation for Basic Research (project no. 20-05-00274, measurements at ZSS and data preparation for the comparison).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Rakitin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakitin, V.S., Gruzdev, A.N., Kirillova, N.S. et al. Validation of TROPOMI Satellite Measurements of the NO2 Content in the Troposphere and Stratosphere with Ground-Based Measurements at the Zvenigorod Scientific Station of A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. Atmos Ocean Opt 36, 213–224 (2023). https://doi.org/10.1134/S1024856023030168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023030168

Keywords:

Navigation