Skip to main content
Log in

Polarization Characteristics of the Coherent Backscattering Peak for Large Nonspherical Particles with Random Orientation in Space

  • OPTICAL MODELS AND DATABASES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Polarization elements of the light scattering matrix in the vicinity of the backscattering direction of a perfect hexagonal column and a particle of a random convex polyhedral shape are studied within the physical optics approximation. The study is carried out for particles with a size of 10–100 µm for a wavelength of 0.532 µm. It is shown that, within the vicinity of the coherent backscattering peak, polarization elements of the matrix have significant local extrema. At the same time, their angular width is essentially independent of the particle shape but significantly depends on the size. The results obtained are of interest for the interpretation of lidar measurements in cirrus clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. K.-N. Liou and P. Yang, Light Scattering by Ice Crystals. Fundamentals and Applications (Cambridge University Press, Cambridge, 2016).

    Book  Google Scholar 

  2. A. Tsekeri, V. Amiridis, A. Louridas, G. Georgoussis, V. Frendenthaler, S. Metallinos, G. Doxastakis, J. Gasteiger, N. Siomos, P. Paschou, et al., “Polarization lidar for detecting dust orientation: system design and calibration,” Atmos. Meas. Tech. 14, 7453–7474 (2021).

    Article  Google Scholar 

  3. M. I. Mishchenko, V. K. Rosenbush, N. N. Kiselev, D. F. Lupishko, V. P. Tishkovets, V. G. Kaydash, I. N. Belskaya, Y. S. Efimov, and N. M. Shakhovskoy, Polarimetric Remote Sensing of Solar System Objects (Akademperiodika, Kyiv, 2010).

    Book  Google Scholar 

  4. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic, San Diego, 2000).

    Google Scholar 

  5. A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1998).

    MATH  Google Scholar 

  6. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106, 546–557 (2007).

    Article  ADS  Google Scholar 

  7. E. Zubko, K. Shmirko, A. Pavlov, W. Sun, G. L. Schuster, Y. Hu, S. Stamnes, A. Omar, R. R. Baize, M. P. McCormick, et al., “Active remote sensing of atmospheric dust using relationships between their depolarization ratios and reflectivity,” Opt. Lett. 46, 2352–2355 (2021).

    Article  ADS  Google Scholar 

  8. E. Zubko, A. J. Weinbergern, N. Zubko, Yu. Shkuratov, and G. Videen, “Umov effect in single-scattering dust particles: Effect of irregular shape,” Opt. Lett. 42, 1962–1965 (2017).

    Article  ADS  Google Scholar 

  9. Y. Grynko, Y. Shkuratov, and J. Forstner, “Intensity surge and negative polarization of light from compact irregular particles,” Opt. Lett. 43, 3562–3565 (2018).

    Article  ADS  Google Scholar 

  10. Y. Grynko, Y. Shkuratov, and J. Forstner, “Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness,” Opt. Lett. 41, 3491–3494 (2016).

    Article  ADS  Google Scholar 

  11. P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).

    Article  ADS  Google Scholar 

  12. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).

    Article  ADS  Google Scholar 

  13. A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 164, 175–183 (2015).

    Article  ADS  Google Scholar 

  14. V. A. Shishko, A. V. Konoshonkin, N. V. Kustova, D. N. Timofeev, and A. G. Borovoi, “Coherent and incoherent backscattering by a single large particle of irregular shape,” Opt. Express 27, 32 984–32 993 (2019).

    Article  Google Scholar 

  15. P. Yang and K. N. Liou, “Light scattering by hexagonal ice crystals: Comparison of finite-difference time domain and geometric optics models,” J. Opt. Soc. Am. A12, 162–176 (1995).

    Article  ADS  Google Scholar 

  16. K. Masuda, H. Ishimoto, and Y. Mano, “Efficient method of computing a geometric optics integral for light scattering by nonspherical particles,” Pap. Meteorol. Geophys. 63, 15–19 (2012).

    Article  Google Scholar 

  17. K. Muinonen, “Scattering of light by crystals: A modified Kirchhoff approximation,” Appl. Opt. 28, 3044–3050 (1989).

    Article  ADS  Google Scholar 

  18. S. Iwasaki and H. Okamoto, “Analysis of the enhancement of backscattering by nonspherical particles with flat surfaces,” Appl. Opt. 40, 6121–6129 (2001).

    Article  ADS  Google Scholar 

  19. K. Sato and H. Okamoto, “Characterization of Z(E) and LDR of nonspherical and inhomogeneous ice particles for 95-GHz cloud radar: Its implication to microphysical retrievals,” J. Geophys. Res. 111 (D22213) (2006).

  20. L. Bi, P. Yang, G. W. Kattawar, Y. Hu, B. A. Baum, “Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508 (2011).

    Article  ADS  Google Scholar 

  21. A. J. Baran, H. Ishimoto, O. Sourdeval, E. Hesse, and C. Harlow, “The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part II: Application to a three-component model of ice cloud and its evaluation against the bulk single-scattering properties of various other aggregate models,” J. Quant. Spectrosc. Radiat. Transfer 206, 83–100 (2018).

    Article  ADS  Google Scholar 

  22. E. Hesse, L. Taylor, C. T. Collier, A. Penttila, T. Nousiainen, and Z. Ulanowski, “Discussion of a physical optics method and its application to absorbing smooth and slightly rough hexagonal prisms,” J. Quant. Spectrosc. Radiat. Transfer 218, 54–67 (2018).

    Article  ADS  Google Scholar 

  23. A. V. Konoshonkin, A. G. Borovoi, N. V. Kustova, V. A. Shishko, and D. N. Timofeev, Light Scattering by Atmospheric Ice Crystals in the Physical Optics Approximation (Fizmatlit, Moscow, 2022) [in Russian].

    Google Scholar 

  24. G. P. Kokhanenko, Y. S. Balin, M. G. Klemasheva, S. V. Nasonov, M. M. Novoselov, I. E. Penner, and S. V. Samoilova, “Scanning polarization lidar LOSA-M3: Opportunity for research of crystalline particle orientation in the clouds of upper layers,” Atmos. Meas. Tech. 13, 1113–1127 (2020).

    Article  Google Scholar 

  25. J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: German meteorological service autonomous raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51, 8111–8131 (2012).

    Article  ADS  Google Scholar 

  26. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University Press, Cambridge, 2006).

    Google Scholar 

  27. M. I. Mishchenko, J. M. Dlugach, L. Liu, V. K. Rosenbush, N. N. Kiselev, and Y. G. Shkuratov, “Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo solar system objects,” Astrophys. J. Lett. 705, L118–L122 (2009).

    Article  ADS  Google Scholar 

  28. K. Muinonen, “Coherent backscattering of light by complex random media of spherical scatterers: Numerical solution,” Waves Random Media 14, 365–388 (2004).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. V. D. Ozrin, “Exact solution for coherent backscattering of polarized light from a random medium of Rayleigh scatterers,” Waves Random Media 2, 141–164 (1992).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. A. Penttila, K. Lumme, E. Hadamcik, and A.-C. Levasseur-Regourd, “Statistical analysis of asteroidal and cometary polarization phase curves,” Astron. Astrophys. 432, 1081–1090 (2005).

    Article  ADS  Google Scholar 

  31. E. V. Petrova, K. Jockers, and N. N. Kiselev, “Light scattering by aggregates with sizes comparable to the wavelength: An application to cometary dust,” Icarus 148, 526–536 (2000).

    Article  ADS  Google Scholar 

  32. E. V. Petrova, V. P. Tishkovets, and K. Jockers, “Polarization of light scattered by solar system bodies and the aggregate model of dust particles,” Sol. Syst. Res 38, 354–371 (2004).

    Article  Google Scholar 

  33. V. K. Rosenbush, “The phase-angle and longitude dependence of polarization for Callisto,” Icarus 159, 145–155 (2002).

    Article  ADS  Google Scholar 

  34. Yu. Shkuratov, A. Ovcharenko, E. Zubko, H. Volten, O. Munoz, and G. Videen, “The negative polarization of light scattered from particulate surfaces and of independently scattering particles,” J. Quant. Spectrosc. Radiat. Transfer 88, 267–284 (2004).

    Article  ADS  Google Scholar 

  35. Yu. Shkuratov, S. Bondarenko, V. Kaydash, G. Videen, O. Munos, and H. Volten, “Photometry and polarimetry of particulate surfaces and aerosol particles over a wide range of phase angles,” J. Quant. Spectrosc. Radiat. Transfer 106, 487–508 (2007).

    Article  ADS  Google Scholar 

  36. Z. Wang, S. Cui, Z. Zhang, J. Yang, H. Gao, and F. Zhang, “Theoretical extension of universal forward and backward Monte Carlo radiative transfer modeling for passive and active polarization observation simulations,” J. Quant. Spectrosc. Radiat. Transfer 235, 81–94 (2019).

    Article  ADS  Google Scholar 

  37. Y. G. Shkuratov, K. Muinonen, E. Bowell, K. Lumme, J. I. Peltoniemi, M. A. Kreslavsky, D. G. Stankevich, V. P. Tishkovetz, N. V. Opanasenko, and L. Y. Melkumova, “A critical review of theoretical models of negatively polarized light scattered by atmosphere less solar system bodies,” Earth Moon Planets 65, 201–246 (1994).

    Article  ADS  Google Scholar 

  38. M. I. Mishchenko, J.-M. Luck, and T. M. Nieuwenhuizen, “Full angular profile of the coherent polarization opposition effect,” J. Opt. Soc. Am. A 17, 888–891 (2000).

    Article  ADS  Google Scholar 

  39. G. Videen, K. Muinonen, and K. Lumme, “Coherence, power laws, and the negative polarization surge,” Appl. Opt. 42, 3647–3652 (2003).

    Article  ADS  Google Scholar 

  40. C. Zhou and P. Yang, “Backscattering peak of ice cloud particles,” Opt. Express 23, 11995–12003 (2015).

    Article  ADS  Google Scholar 

  41. M. I. Mishchenko, L. D. Travis, and J. W. Hovenier, “Special issue on light scattering by nonspherical particles,” J. Quant. Spectrosc. Radiat. Transfer 61 (1999).

  42. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  43. E. Zubko, K. Muinonen, Y. Shkuratov, E. Hadamcik, A.-C. Levasseur-Regourd, and G. Videen, “Evaluating the carbon depletion found by the Stardust mission in Comet 81P/Wild 2,” Astron. Astrophys. 544 (2012).

  44. Y. Shkuratov, N. Opanasenko, E. Zubko, Y. Grynko, V. Korokhin, C. Pieters, G. Videen, U. Mall, and A. Opanasenko, “Multispectral polarimetry as a tool to investigate texture and chemistry of lunar regolith particles,” Icarus 187 (2), 406–416 (2007).

    Article  ADS  Google Scholar 

  45. B. Lyot, Recherches sur la Polarisation de la Lumière des Planètes et de Quelques Substances Terrestres (H. Tessier, Orléans, 1929).

    Google Scholar 

  46. A. Dollfus and E. Bowell, “Polarimetric properties of the lunar surface and its interpretation. Part I. Telescopic observations,” Astron. Astrophys. 10, 29 (1971).

    ADS  Google Scholar 

  47. www.ssec.wisc.edu/ice_models/. Cited September 8, 2022.

  48. A. Borovoi, A. Konoshonkin, and N. Kustova, “The physics-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014).

    Article  ADS  Google Scholar 

  49. A. V. Konoshonkin, N. V. Kustova, A. G. Borovoi, Y. Grynko, and J. Forstner, “Light scattering by ice crystals of cirrus clouds: comparison of the physical optics methods,” J. Quant. Spectrosc. Radiat. Transfer 182, 12–23 (2016).

    Article  ADS  Google Scholar 

  50. A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm,” Atmos. Ocean. Opt. 28 (5), 441–447 (2015).

    Article  Google Scholar 

  51. D. L. Mitchell, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 1. Microphysics,” J. Atmos. Sci. 51, 797– 816 (1994).

    Article  ADS  Google Scholar 

  52. D. N. Timofeev, A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, and A. G. Borovoi, “Estimation of the absorption effect on light scattering by atmospheric ice crystals for wavelengths typical for problems of laser sounding of the atmosphere,” Atmos. Ocean. Opt. 32 (5), 564–568 (2019).

    Article  Google Scholar 

  53. P. Yang, B. A. Baum, A. J. Heymsfield, Y. X. Hu, H.‑L. Huang, S.-C. Tsay, and S. Ackerman, “Single-scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 1159–1169 (2003).

    Article  ADS  Google Scholar 

  54. J. Um and G. M. McFarquhar, “Single-scattering properties of aggregates of bullet rosettes in cirrus,” J. Appl. Meteorol. Clim. 46, 757–775 (2007).

    Article  ADS  Google Scholar 

  55. A. Borovoi, N. Kustova, and A. Konoshonkin, “Interference phenomena at backscattering by ice crystals of cirrus clouds,” Opt. Exp. 23, 24 557–24 571 (2015).

    Article  Google Scholar 

  56. M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-77-10 089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Konoshonkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konoshonkin, A.V., Kustova, N.V., Shishko, V.A. et al. Polarization Characteristics of the Coherent Backscattering Peak for Large Nonspherical Particles with Random Orientation in Space. Atmos Ocean Opt 36, 244–255 (2023). https://doi.org/10.1134/S1024856023030156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023030156

Keywords:

Navigation