Skip to main content
Log in

Retrieval of HDO Relative Content in the Atmosphere from Simultaneous GOSAT-2 Measurements in the Thermal and Near-IR

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

An Erratum to this article was published on 17 August 2023

This article has been updated

Abstract

In this paper, we apply an original technique for solving the inverse problem of hyperspectral satellite sensing to retrieval of the vertical profile of the HDO/H2O ratio in the Earth’s atmosphere with simultaneous use of thermal and near-IR spectra. This technique is used for the first time to retrieve the relative abundance of the HDO isotopologue (δD) in atmospheric water vapor from measurements of the TANSO-FTS IR spectrometer onboard the GOSAT-2 satellite. The δD values retrieved are compared with data obtained at the ground-based TCCON station in Karlsruhe, Germany. The simultaneous use of satellite spectra of outgoing atmospheric radiation in the thermal range and reflected solar radiation in the near-IR ensures a stronger correlation between monthly average satellite and ground-based δD values than the use of one of these ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Change history

REFERENCES

  1. V. I. Ferronskii and V. A. Polyakov, Isotopy of the Earth’s Hydrosphere (Nauchnyi mir, Moscow, 2009) [in Russian].

  2. W. Dansgaard, “Stable isotopes in precipitation,” Tellus 16 (4), 436–468 (1964).

    Article  ADS  Google Scholar 

  3. J. Galewsky, H. C. Steen-Larsen, R. D. Field, J. Worden, C. Risi, and M. Schneider, “Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle,” Rev. Geophys. 54 (4), 809–865 (2016).

    Article  ADS  Google Scholar 

  4. H. Craig, “Standard for reporting concentrations of deuterium and oxygen-18 in natural waters,” Science 133, 1833–1834 (1961).

    Article  ADS  Google Scholar 

  5. D. Wunch, G. Toon, J.-F. Blavier, R. Washenfelder, J. Notholt, B. Connor, D. Griffith, V. Sherlock, and P. Wennberg, “The total carbon column observing network,” Phil. Trans. R. Soc. A 369, 2087–2112 (2011).

    Article  ADS  Google Scholar 

  6. K. G. Gribanov, V. I. Zakharov, S. A. Beresnev, N. V. Rokotyan, V. A. Poddubny, R. Imasu, P. A. Chistyakov, G. G. Skorik, and V. V. Vasin, “Sensing HDO/H2O in the Ural’s atmosphere using ground-based measurements of IR solar radiation with a high spectral resolution,” Atmos. Ocean. Opt. 24 (4), 369–372 (2011).

    Article  Google Scholar 

  7. K. G. Gribanov and V. I. Zakharov, “Possibility to monitor the HDO/H2O content ratio in the atmosphere from space observations of the outgoing thermal radiation,” Atmos. Ocean. Opt. 12 (9), 825–826 (1999).

    Google Scholar 

  8. X. Lee, S. Sargent, R. Smith, and B. Tanner, “In situ measurement of the water vapor 18O/16O isotope ratio for atmospheric and ecological applications,” J. Atmos. Ocean. Tech. 22, 555–565 (2005).

    Article  Google Scholar 

  9. V. I. Zakharov, R. Imasu, K. G. Gribanov, G. Hoffmann, and J. Jouzel, “Latitudinal distribution of the deuterium to hydrogen ratio in the atmospheric water vapor retrieved from IMG/ADEOS Data,” Geophys. Rev. Lett. 31 (12), 3 (2004).

    Article  Google Scholar 

  10. A. Schneider, T. Borsdorff, J. van de Brugh, H. Hu, and J. Landgraf, “A full-mission data set of H2O and HDO columns from SCIAMACHY 2.3 μm reflectance measurements,” Atmos. Meas. Tech. 11, 3339–3350 (2018).

    Article  Google Scholar 

  11. M. Schneider and F. Hase, “Optimal estimation of tropospheric H2O and δD with IASI/METOP,” Atmos. Chem. Phys. 11, 11 207–11 220 (2011).

    Article  Google Scholar 

  12. C. Frankenberg, D. Wunch, G. Toon, C. Risi, R. Scheepmaker, J.-E. Lee, P. Wennberg, and J. Worden, “Water vapor isotopologue retrievals from high-resolution GOSAT shortwave infrared spectra,” Atmos. Meas. Tech. 6, 263–274 (2013).

    Article  Google Scholar 

  13. H. Suto, F. Kataoka, N. Kikuchi, R. Knuteson, A. Butz, M. Haun, H. Buijs, K. Shiomi, H. Imai, and A. Kuze, “Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit,” Atmos. Meas. Tech. 14 (3), 2013–2039 (2021).

    Article  Google Scholar 

  14. K. G. Gribanov, V. I. Zakharov, S. A. Tashkun, and Vl. G. Tyuterev, “A new software tool for radiative transfer calculations and its application to IMG/ADEOS data,” J. Quant. Spectrosc. Radiat. Transfer 68 (4), 435–451 (2001).

    Article  ADS  Google Scholar 

  15. I. V. Zadvornykh, K. G. Gribanov, V. I. Zakharov, and R. Imasu, “Radiative transfer code for the thermal and near-infrared regions with multiple scattering,” Atmos. Ocean. Opt.30 (4), 305–310 (2017).

    Article  Google Scholar 

  16. R. J. Spurr, “VLIDORT: a linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media,” J. Quant. Spectrosc. Radiat. Transfer 102 (2), 316–342 (2006).

    Article  ADS  Google Scholar 

  17. C. D. Rogers, Inverse Methods for Atmospheric Sounding. Theory and Practice (World Scientific, Singapore, 2000).

    Book  Google Scholar 

  18. H. Boesch, N. M. Deutscher, T. Warneke, K. Byckling, A. J. Cogan, D. W. T. Griffith, J. Notholt, R. J. Parker, and Z. Wang, “HDO/H2O ratio retrievals from GOS-AT,” Atmos. Meas. Tech. 6, 599–612 (2013).

    Article  Google Scholar 

  19. I. V. Zadvornykh, K. G. Gribanov, N. Yu. Denisova, V. I. Zakharov, and R. Imasu, “Method for retrieval of the HDO/H2O ratio vertical profile in the atmosphere from satellite spectra simultaneously measured in thermal and near-IR ranges,” Atmos. Ocean. Opt. 34 (2), 81–86 (2021).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 19-11-0197).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Zadvornykh, K. G. Gribanov, V. I. Zakharov or R. Imasu.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadvornykh, I.V., Gribanov, K.G., Zakharov, V.I. et al. Retrieval of HDO Relative Content in the Atmosphere from Simultaneous GOSAT-2 Measurements in the Thermal and Near-IR. Atmos Ocean Opt 36, 127–131 (2023). https://doi.org/10.1134/S1024856023030120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023030120

Keywords:

Navigation