Skip to main content
Log in

Features of Imaging in a Bistatic Laser Active Optical System

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Features of high-energy and high-contrast imaging in a bistatic laser active optical system (laser monitor) are considered. A system is designed, where a brightness amplifier has a larger volume than a lighting source, which provides for high-contrast imaging of microobjects. The influence of the time shift between a superradiance pulse of the amplifier and the time of signal arrival at its input on the contrast and energy of images formed by one pulse is ascertained for the first time. It is shown that artifacts resulted from the superluminous radiation “parasitic” reflection and scattering from optical circuit elements significantly reduce the contrast and power of signals generated. This effect can be suppressed by means of generation of an amplifier input signal before the generation of amplified spontaneous emission; the optimal delay is 1 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. M. A. Lavrukhin, P. A. Bokhan, P. P. Gugin, and D. E. Zakrevsky, “Self-terminating barium ion laser at 614.2 nm,” Opt. Laser Technol. 149 (107625) (2022). https://doi.org/10.1016/j.optlastec.2021.107625

  2. D. V. Shiyanov, M. V. Trigub, V. G. Sokovikov, and G. S. Evtushenko, “MnCl2 laser with pulse repetition frequency up to 125 kHz,” Opt. Laser Technol. 129 (106302) (2020). doi . 2020.106302https://doi.org/10.1016/j.optlastec

  3. I. K. Kostadinov, K. A. Temelkov, D. N. Astadjov, S. I. Slaveeva, G. P. Yankov, and N. V. Sabotinov, “High-power copper bromide vapor laser,” Opt. Commun. 50115 (127363) (2021). https://doi.org/10.1016/j.optcom.2021.127363

  4. I. V. Ponomarev, S. B. Topchiy, Y. N. Andrusenko, and L. D. Shakina, “The successful treatment of eyelid intradermal melanocytic nevi (Nevus of Miescher) with the dual-wavelengths copper vapor laser,” J. Laser. Medic. Sci. 12, 1–3 (2021). https://doi.org/10.34172/jlms.2021.23

    Article  Google Scholar 

  5. V. V. Belov, V. N. Abramochkin, Yu. V. Gridnev, A. N. Kudryavtsev, S. P. Kulaev, M. V. Tarasenkov, V. O. Troitskii, and A. V. Fedosov, “Bistatic optoelectronic communication in the UV wavelength range. Field experiments 2016,” Opt. Atmos. Okeana 30 (2), 111–114 (2017).

    Google Scholar 

  6. N. A. Lyabin, M. A. Kazaryan, A. A. Asratyan, S. M. Kazaryan, S. A. Ambrozevich, V. I. Krasovskii, R. Mkhitaryan, G. Tonoyan, E. A. Morozova, O. S. Andrienko, Hongda Li, and V. I. Sachkov, “Current state of research in precision microprocessing and some of their applications,” Proc. SPIE—Int. Soc. Opt. Eng. 113222019 (113221F) (2019). https://doi.org/10.1117/12.2550843

  7. V. M. Yermachenko, A. P. Kuznetsov, V. N. Petrovskiy, N. M. Prokopova, A. P. Strel’tsov, and S. A. Uspenskiy, “Specific features of the welding of metals by radiation of high-power fiber laser,” Laser Phys. 21 (8), 1530–1537 (2011). https://doi.org/10.1134/S1054660X11160043

    Article  Google Scholar 

  8. V. G. Prokoshev, D. V. Abramov, S. U. Danilov, S. I. Shishin, A. V. Chizhov, and S. M. Arakelian, “Real time diagnostics of the laser-induced thermochemical processes and nonlinear images on the surface of materials experiment and mathematical modeling,” Laser Phys. 11 (11), 1167–1171 (2011).

    Google Scholar 

  9. L. Li, A. P. Ilyin, F. A. Gubarev, A. V. Mostovshchikov, and M. S. Klenovskii, “Study of self-propagating high-temperature synthesis of aluminum nitride using a laser monitor,” Ceramics Intern. 46 (16), 19800–19808 (2018).

    Article  Google Scholar 

  10. M. V. Trigub, V. V. Platonov, G. S. Evtushenko, V. V. Osipov, and T. G. Evtushenko, “Laser monitors for high speed imaging of materials modification and production,” Vacuum 143, 486–490 (2017).

    Article  ADS  Google Scholar 

  11. M. V. Trigub, S. N. Torgaev, G. S. Evtushenko, V. O. Troitskii, and D. V. Shiyanov, “A bistatic laser monitor,” Tech. Phys. Lett. 42, 632–634 (2016).

    Article  ADS  Google Scholar 

  12. N. A. Vasnev, M. V. Trigub, and G. S. Evtushenko, “Features of operation of a brightness amplifier on copper bromide vapors in the bistatic scheme of a laser monitor,” Atmos. Ocean. Opt. 32 (4), 483–489 (2019).

    Article  Google Scholar 

  13. M. V. Trigub, N. A. Vasnev, and G. S. Evtushenko, “Bistatic laser monitor for imaging objects and processes,” Appl. Phys. B: Laser. Opt. 126 (3), 1–7 (2020). https://doi.org/10.1007/s00340-020-7387-5

    Article  Google Scholar 

  14. F. A. Gubarev, A. V. Mostovshchikov, A. P. Il’in, L. Li, E. Yu. Burkin, and V. V. Sviridov, “A laser monitor with independent lighting and brightness amplification for imaging high-temperature combustion of metal nanopowders,” Tech. Phys. Lett. 47, 372–376 (2021).

    Article  ADS  Google Scholar 

  15. M. V. Trigub, N. A. Vasnev, V. D. Kitler, and G. S. Evtushenko, “The use of a bistatic laser monitor for high-speed imaging of combustion processes,” Atmos. Ocean. Opt. 34 (2), 154–159 (2021).

    Article  Google Scholar 

  16. D. N. Astadjov, L. I. Stoychev, S. K. Dixit, S. V. Nakhe, and N. V. Sabotinov, “High-brightness CuBr MOPA laser with diffraction-limited throughout-pulse emission,” IEEE J. Quantum. Electron. 41 (8), 1097–1101 (2005). https://doi.org/10.1109/JQE.2005.850701

    Article  ADS  Google Scholar 

  17. M. V. Trigub, N. A. Vasnev, G. S. Evtushenko, and V. A. Dimaki, “A synchronization system for the pulse-periodic operating mode of active media on self-terminating transitions in metal vapors,” Instrum. Exp. Tech. 62 (1), 28–32 (2019).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 19-79-10 096-P).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Trigub or N. A. Vasnev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trigub, M.V., Vasnev, N.A. Features of Imaging in a Bistatic Laser Active Optical System. Atmos Ocean Opt 36, 185–190 (2023). https://doi.org/10.1134/S1024856023030119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023030119

Keywords:

Navigation