Skip to main content
Log in

Study of Thundercloud Characteristics in Northwest Russia Using Neural Networks

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The paper presents results of the analysis of radar characteristics of clouds, including polarization characteristics, and lightning data for June 9, 2020, in the vicinity of St. Petersburg during intense thunderstorm activity. Characteristics of thunderclouds and clouds without lightning are compared. Statistical data about their differences are presented. The regression analysis of the correlation between the lightning flash rate and radar characteristics of clouds is performed using neural networks. The impact of these parameters on the lightning flash rate has been estimated. A mathematical expression for calculating the lightning flash rate by data on the differential reflectivity maximum of the cloud and the volume of its supercooled part with reflectivity of not less than 35 dBZ is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. A. A. Sin’kevich, Yu. P. Mikhailovskiy, M. L. Toropova, V. B. Popov, D. S. Starykh, Yu. A. Dovgalyuk, N. E. Veremei, “Thunderstorm with waterspout structure and the dependence lightning frequency on its characteristics,” Atmos. Ocean. Opt. 33 (6), 645–649 (2020). https://doi.org/10.1134/S1024856020060226

    Article  Google Scholar 

  2. X. Qie and Y. Zhang, “A review of atmospheric electricity research in China from 2011 to 2018,” Adv. Atmos. Sci. 36 (9), 994–1014 (2019). https://doi.org/10.1007/s00376-019-8195-x

    Article  Google Scholar 

  3. D. J. Cecil, S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, “Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics,” Mon. Weather. Rev. 133 (3), 543–566 (2005). https://doi.org/10.1175/MWR-2876.1

    Article  ADS  Google Scholar 

  4. C. P. R. Saunders and S. L. Peck, “Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions,” J. Geophys. Res.: Atmos. 103 (D12), 13949–13956 (1998). https://doi.org/10.1029/97JD02644

    Article  ADS  Google Scholar 

  5. A. A. Sin’kevich, V. B. Popov, A. M. Abshaev, B. A. Boe, S. D. Pawar, Yu. P. Mikhailovskii, M. L. Toropova, V. Gopalakrishnan, and Zh. M. Gekkieva, “Radar characteristics of convective clouds during transition to the cumulonimbus stage in different regions of the world,” Atmos. Ocean. Opt. 34 (2), 134–139 (2021). https://doi.org/10.1134/S1024856021020081

    Article  Google Scholar 

  6. T. Ushio, S. J. Heckman, D. J. Boccippio, H. J. Christian, and Z.-I. Kawasaki, “A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data,” J. Geophys. Res.: Atmos. 106 (D20), 24089–24095 (2001). https://doi.org/10.1029/2001JD900233

    Article  ADS  Google Scholar 

  7. A. T. Pessi and S. Businger, “Relationships among lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean,” J. Appl. Meteorol. Climatol 48 (4), 833–848 (2009). https://doi.org/10.1175/2008JAMC1817.1

    Article  ADS  Google Scholar 

  8. E. J. Zipser and K. R. Lutz, “The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?,” Mon. Weather. Rev. 122 (8), 1751–1759 (1994). https://doi.org/10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2

    Article  ADS  Google Scholar 

  9. T. Fehr, N. Dotzek, and H. Holler, “Comparison of lightning activity and radar-retrieved microphysical properties in EULINOX storms,” Atmos. Res. 76 (1-4), 167–189 (2005). https://doi.org/10.1016/j.atmosres.2004.11.027

    Article  Google Scholar 

  10. W. A. Petersen and S. A. Rutledge, “Regional variability in tropical convection: Observations from TRMM,” J. Clim. 14 (17), 3566–3586 (2001). https://doi.org/10.1175/1520-0442(2001)014<3566:RVITCO>2.0.CO;2

    Article  ADS  Google Scholar 

  11. M. B. Baker, H. J. Christian, and J. Latham, “A computational study of the relationships linking lightning frequency and other thundercloud parameters,” Q. J. R. Meteorol. Soc. 121 (527), 1525–1548 (1995). https://doi.org/10.1002/qj.49712152703

    Article  ADS  Google Scholar 

  12. A. A. Sin’kevich, Yu. P. Mikhailovskii, V. B. Popov, V. S. Snegurov, A. V. Snegurov, Yu. A. Dovgalyuk, N. E. Veremei, and S. Yu. Matrosov, “Relationships between the structure of convective clouds and lightning frequency derived from radiophysical measurements,” Russ. Meteorol. Hydrol. 44 (6), 394–403 (2019).

    Article  Google Scholar 

  13. W. A. Petersen, H. J. Christian, and S. A. Rutledge, “TRMM observations of the global relationship between ice water content and lightning,” Geophys. Rev. Lett. 32 (14) (2005). https://doi.org/10.1029/2005GL023236

  14. A. A. Sin’kevich, V. B. Popov, Yu. P. Mikhailovskii, M. L. Toropova, Yu. A. Dovgalyuk, N. E. Veremei, and D. S. Starykh, “Characteristics of cumulonimbus with waterspout over Ladoga lake from remote measurements,” Atmos. Ocean. Opt. 33 (4), 387–392 (2020). https://doi.org/10.1134/S1024856020040156

    Article  Google Scholar 

  15. C. Cornet, H. Isaka, B. Guillemet, and F. Szczap, “Neural network retrieval of cloud parameters of inhomogeneous clouds from multispectral and multiscale radiance data: Feasibility study,” J. Geophys. Res.: Atmos. 109 (D12) (2004). https://doi.org/10.1029/2003JD004186

  16. A. Wimmers, C. Velden, and J. H. Cossuth, “Using deep learning to estimate tropical cyclone intensity from satellite passive microwave imagery,” Mon. Weather. Rev. 147 (6), 2261–2282 (2019). https://doi.org/10.1175/MWR-D-18-0391.1

    Article  ADS  Google Scholar 

  17. A. McGovern, R. Lagerquist, D. J. Gagne, G. E. Jergensen, K. L. Elmore, C. R. Homeyer, and T. Smith, “Making the black box more transparent: Understanding the physical implications of machine learning,” Bull. Am. Meteorol. Soc. 100 (11) (2019). https://doi.org/10.1175/BAMS-D-18-0195.1

  18. E. S. Andreeva, “Application of methods neuroprogramming for determination risks of dangerous phenomena of weather,” Izv. Vyssh. Ucheb. Zaved. Sev.-Kavk. Region. Estestv. Nauki. No. 5, 105–107 (2008).

  19. S. S. Chaharborj, M. M. Borazjani, and Y. Gheisari, “Predicting climatic meteorological parameters by using the artificial dynamics neural networks: Case study, Bushehr City,” J. Comput. Sci. Comput. Math. 6 (4) (2016). https://doi.org/10.20967/jcscm.2016.04.005

  20. Yu. P. Mikhailovsky, M. L. Toropova, N. E. Veremey, Yu. A. Dovgalyuk, A. A. Sin’kevich, J. Yang, and J. Lu, “Dynamics of the electrical structure of cumulonimbus clouds,” Radiophys. Quantum Electron. 64 (5), 309–320 (2021).

    Article  ADS  Google Scholar 

  21. B. Dolan, S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, “A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset,” J. Appl. Meteorol. Climatol. 52 (9), 2162–2186 (2013). https://doi.org/10.1175/JAMC-D-12-0275.1

    Article  ADS  Google Scholar 

  22. E. M Sal’man, “Complex radar technique for aviation weather service,” Trudy GGO, Is. 159, 24–34 (1964).

    Google Scholar 

  23. A. Sin’kevich, B. Boe, S. Pawar, J. Yang, A. Abshaev, Y. Dovgaluk, J. Gekkieva, V. Gopalakrishnan, A. Kurov, Y. Mikhailovskii, M. Toropova, and N. Veremei, “Investigation of thundercloud features in different regions,” Remote Sens. 13 (16) (2021). https://doi.org/10.3390/rs13163216

  24. D. E. Buechler and S. J. Goodman, “Echo size and asymmetry: Impact on NEXRAD storm identification,” J. Appl. Meteorol. Climatol. 29 (9), 962–969 (1990). https://doi.org/10.1175/1520-0450(1990)029<0962:ESAAIO>2.0.CO;2

    Article  ADS  Google Scholar 

  25. M. S. Gremillion and R. E. Orville, “Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D,” Weather Forecast 14 (5), 640–649 (1999). https://doi.org/10.1175/1520-0434(1999)014<0640:TCOCTG>2.0.CO;2

    Article  ADS  Google Scholar 

  26. B. R. Vincent, L. D. Carey, D. Schneider, K. Keeter, and R. Gonski, “Using WSR-88D reflectivity data for the prediction of cloud-to-ground lightning: A Central North Carolina study,” Natl. Wea. Dig. 27 (1), 35–44 (2003).

    Google Scholar 

  27. Y. H. Yang and P. King, “Investigating the potential of using radar echo reflectivity to nowcast cloud-to-ground lightning initiation over Southern Ontario,” Weather Forecast 25 (4), 1235–1248 (2010). https://doi.org/10.1175/2010WAF2222387.1

    Article  ADS  Google Scholar 

  28. R. M. Mosier, C. Schumacher, R. E. Orville, and L. D. Carey, “Radar nowcasting of cloud-to-ground lightning over Houston, Texas,” Weather Forecast 26 (2), 199–212 (2011). https://doi.org/10.1175/2010WAF2222431.1

    Article  ADS  Google Scholar 

  29. M. R. Kumjian, “Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables,” J. Operational Meteor. 1 (19), 226–242 (2013). https://doi.org/10.15191/nwajom.2013.0119

    Article  Google Scholar 

  30. Guidelines for the Use of Information from a DMRL-C Doppler Meteorological Radar in Synoptic Practice (Moscow, 2019), 3rd ed. [in Russian].

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 22-27-20 031) and St. Petersburg Scientific Foundation (agreement no. 58/2022 of April 15, 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kurov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sin’kevich, A.A., Kurov, A.B., Mikhailovskii, Y.P. et al. Study of Thundercloud Characteristics in Northwest Russia Using Neural Networks. Atmos Ocean Opt 36, 137–143 (2023). https://doi.org/10.1134/S1024856023030107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023030107

Keywords:

Navigation