Skip to main content
Log in

Long-Term Observations of Aureole Scattering Phase Function in the Surface Air Layer in Suburbs of Tomsk (2010–2021)

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The long-term data the aureole scattering phase function are analyzed for angles φ = 1.2° and 20° (I1.2 and I20). They were measured with a closed-type halo photometer at the aerosol station in the V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, in 2010–2021. The interannual, annual, and daily variations in the parameters are analyzed. The daily averages of I1.2, I20 are calculated from the hourly data, the monthly averages, from the daily averages, and the annual averages, from the monthly averages. A weak but significant (at the p = 0.05 level) time trend is found only for the interannual values of I1.2, 1.14% per year. In the annual behavior of I1.2 (I20), we clearly discern a monotonic increase (decrease) from winter toward summer months. Smokes from distant wildfires in 2012 and 2016, and partly in 2018 and 2019, disturb this pattern with high I20 values from July to September. The annual variations in the daily behavior of the monthly average I1.2, I20, and the ratio I20/I1.2 are characteristic for continental surface aerosol. Smokes from distant wildfires lead to high I20 values at nighttime, morning, and evening; and the decrease in I20 in the daytime is not significant with the 0.95 probability due to large standard deviations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. O. Boucher, D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V. -M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S. K. Satheesh, S. Sherwood, B. Stevens, and X. Y. Zhang, “Clouds and aerosols,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I To the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Cambridge University Press, Cambridge, 2014).

    Google Scholar 

  2. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Cambridge University Press, Cambridge, 2013). https://doi.org/10.1017/CBO9781107415324

    Book  Google Scholar 

  3. K. Ya. Kondratyev, Global Climate (Nauka, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  4. K. Ya. Kondratyev, Climatic Effects of Aerosols and Clouds (Springer, Chichester, 1999).

    Google Scholar 

  5. K. Ya. Kondratyev, “Aerosol and climate studies: Current state and prospects. 3. Aerosol radiative forcing,” Atmos. Ocean. Opt. 19 (7), 505–513 (2006).

    Google Scholar 

  6. K. Ya. Kondratyev, “From nano- to global scales: Properties, processes of formation, and aftereffects of atmospheric aerosol impacts. 7. Aerosol radiative forcing and climate,” Atmos. Ocean. Opt. 18 (7), 479–496 (2005).

    Google Scholar 

  7. Y. Derimia, O. Dubovi, X. Huang, T. Lapyonok, P. Litvinov, A. B. Kostinski, P. Dubuisson, and F. Ducos, “Comprehensive tool for calculation of radiative fluxes: Illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics,” Atmos. Chem. Phys. 16, 5763–5780 (2016). https://doi.org/10.5194/acp-16-5763-2016

    Article  ADS  Google Scholar 

  8. M. Bouvet, K. Thom, B. Berthelot, A. Bialek, J. Czapla-Myers, N. P. Fox, P. Goryl, P. Henry, L. Ma, S. Marc, A. Meygre, B. N. Wenny, and E. R. Woolliams, “RadCalNet: A radiometric calibration network for Earth observing imagers operating in the visible to shortwave infrared spectral range,” Remote Sens. 11 (20), 2401 (2019). https://doi.org/10.3390/rs11202401

    Article  ADS  Google Scholar 

  9. G. Doxani, E. Vermote, J.-C. Roger, F. Gascon, S. Adriaensen, D. Frantz, O. Hagolle, A. Hollstein, G. Kirches, F. Li, J. Louis, A. Mangin, N. Pahlevan, B. Pflug, and Q. Vanhellemont, “Atmospheric correction inter-comparison exercise,” Remote Sens. 10 (2), 352 (2018). https://doi.org/10.3390/rs10020352

    Article  ADS  Google Scholar 

  10. L. Li, O. Dubovik, Y. Derimian, G. L. Schuster, T. Lapyonok, P. Litvinov, F. Ducos, D. Fuertes, C. Chen, Z. Li, A. Lopatin, B. Torres, and H. Che, “Retrieval of aerosol components directly from satellite and ground-based measurements,” Atmos. Chem. Phys. 19 (21), 13 409–13 443 (2019). https://doi.org/10.5194/acp-19-13409-2019

    Article  Google Scholar 

  11. Satellite Aerosol Remote Sensing over Land, Ed. by G. Kokhanovsky and G. de Leeuw (Springer, Praxis, Chichester, 2009). https://doi.org/10.1007/978-3-540-69397-0

    Book  Google Scholar 

  12. W. Von Hoyningen-Huene, J. Yoon, M. Vountas, L. G. Istomina, G. Rohen, T. Dinter, A. A. Kokhanovsky, and J. P. Burrows, “Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS,” Atmos. Meas. Tech. 4 (2), 151–171 (2011).

    Article  Google Scholar 

  13. V. V. Belov, M. V. Tarasenkov, M. V. Engel, Yu. V. Gridnev, A. V. Zimovaya, V. N. Abramochkin, E. S. Poznakharev, A. V. Fedosov, and A. N. Kudryavtsev, “Atmospheric correction of satellite images of the Earth’s surface in the optical wavelength range. Optical communication based on scattered radiation,” Atmos. Ocean. Opt. 33 (1), 80–84 (2020).

    Article  Google Scholar 

  14. M. V. Tarasenkov, A. V. Zimovaya, V. V. Belov, and M. V. Engel, “Retrieval of reflection coefficients of the Earth’s surface from MODIS satellite measurements considering radiation polarization,” Atmos. Ocean. Opt. 33 (2), 179–187 (2020).

    Article  Google Scholar 

  15. T. Lurton, J.-B. Renard, D. Vignelles, M. Jeannot, R. Akiki, J.-L. Mineau, and T. Tonnelier, “Light scattering at small angles by atmospheric irregular particles: Modelling and laboratory measurements,” Atmos. Meas. Tech. 7, 931–939 (2014). https://doi.org/10.5194/amt-7-931-2014

    Article  Google Scholar 

  16. WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016–2023 (WMO, Geneva, 2017), no. 228.

  17. G. V. Rozenberg, ”Light scattering in the Earth’s atmosphere (an essay on the 150th anniversary of the discovery by Arago of the polarization of light in the daytime sky, and on the 100th anniversary of the discovery by Govi of the polarization of light in scattering),” Phys.-Uspekhi 3, 346–371 (1960).

    Article  ADS  Google Scholar 

  18. C. E. Junge, Air Chemistry and Radioactivity (Academic Press, New-York, 1963).

  19. G. V. Rozenberg and A. B. Sandomirskii, “Optical stratification of atmospheric aerosol,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 7 (7), 737–749 (1971).

    Google Scholar 

  20. K. Bullrich, “Scattering radiation in the atmosphere and the natural aerosol,” Adv. Geophys. 10, 99–260 (1964).

    Article  ADS  Google Scholar 

  21. V. E. Zuev, Air Transparency for Visible and IR Rays (Sov. radio, Moscow, 1966) [in Russian].

  22. G. V. Rozenberg, “Optical investigations of atmospheric aerosol,” Phys.-Uspekhi 11, 353–380 (1968).

    Article  ADS  Google Scholar 

  23. G. V. Rozenberg, “Properties of atmospheric aerosol from optical study,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 3 (9), 936–949 (1967).

    Google Scholar 

  24. Atmospheric Aerosol and Its Effect on the Radiative Transfer, Ed. by K.Ya. Kondratyev (Gidrometeoizdat, Leningrad, 1978) [in Russian].

    Google Scholar 

  25. M. I. Budyko, G. S. Golitsyn, and Yu. A. Izrael’, Global Climate Disasters (Gidrometeoizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  26. G. V. Rozenberg, “Origination and evolution of atmospheric aerosol—kinetically caused parameters,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 19 (1), 21–35 (1983).

    Google Scholar 

  27. O. Boucher, V. Bellassen, H. Benveniste, P. Ciais, P. Criqui, C. Guivarch, H. Le Treut, S. Mathy, and R. Seferian, “In the wake of Paris Agreement, scientists must embrace new directions for climate change research,” PNAS 113 (27), 7287–7290 (2016). https://doi.org/10.1073/pnas.1607739113

    Article  ADS  Google Scholar 

  28. B. T. Tashenov, “Solar aureole and atmospheric aerosol,” in Light Absorption and Scattering in the Atmosphere (Nauka Kazakhskoi SSSR, Alma-Ata, 1971), pp. 29–37 [in Russian].

    Google Scholar 

  29. G. I. Gorchakov and A. A. Isakov, “Aureole phase functions in haze,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 10 (5), 504–511 (1974).

    Google Scholar 

  30. S. P. Belyaev, N. K. Nikiforova, V. V. Smirnov, and G. I. Shchelchkov, Electrooptical Techniques for Studying Aerosols (Energoizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  31. B. S. Pritchard and W. G. Eliott, “Two instruments for atmospheric optics measurements,” J. Opt. Soc. Atmos. 50 (3), 191–199 (1960).

    Article  ADS  Google Scholar 

  32. G. I. Gorchakov, A. A. Isakov, and M. A. Sviridenkov, “Statistical couplings between the scattering coefficient and directional scattering coefficient in the 0.5–165° angle range,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 12 (12), 1261–1267 (1976).

    Google Scholar 

  33. Yu. S. Lyubovtseva and G. V. Rozenberg, “Aureole part of the scattering phase function in surface air,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 2 (3), 248–262 (1966).

    Google Scholar 

  34. V. V. Pol’kin and Vas. V. Pol’kin, “Inter-annual and seasonal variability of the diurnal behavior of aureole scattering phase function at the aerosol monitoring station of LOA IAO SB RAS in 2010–2014,” Proc. SPIE—Int. Soc. Opt. Eng. 9680 (2015). https://doi.org/10.1117/12.2205780

  35. Vas. V. Polkin, “Seasonal variation of the diurnal behavior of aureole scattering phase function at the aerosol monitoring station of LOA IAO SB RAS,” Proc. SPIE—Int. Soc. Opt. Eng. 10833 (2018). https://doi.org/10.1117/12.2503052

  36. Vas. V. Polkin and M. V. Panchenko, “Annual variation of the of aureole scattering phase function at the surface layer of the Tomsk suburb,” Proc. SPIE—Int. Soc. Opt. Eng. 11208 (2019). https://doi.org/10.1117/12.2540709

  37. M. A. Sviridenkov, “Van der Hulst approximation and microstructure of dust aerosol,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 29 (2), 218–221 (1993).

    Google Scholar 

  38. V. P. Shmargunov, Vik. V. Pol’kin, A. G. Tumakov, M. V. Panchenko, and Vas. V. Pol’kin, “Closed-volume aureole photometer,” Pribory Tekhnika Eksperim, No. 6, 155–157 (2010).

    Google Scholar 

  39. Vas. V. Pol’kin, V. V. Pol’kin, V. P. Shmargunov, A. G. Tumakov, and M. V. Panchenko, RF Patent No. 2013136713/28, Byull. Izobret. No. 19 (July 10, 2014).

  40. M. V. Panchenko, V. V. Pol’kin, Vas. V. Pol’kin, V. S. Kozlov, E. P. Yausheva, and V. P. Shmargunov, “The size distribution of the "dry matter” of particles in the surface air layer in suburbs of Tomsk within the empirical classification of “aerosol weather” types,” Atmos. Ocean. Opt. 32 (6), 655–662 (2019).

    Article  Google Scholar 

  41. G. Kramer, Mathematical Statistics Methods (Mir, Moscow, 1975) [in Russian].

  42. A. F. Kovalev, “Certain characteristics of the Earth’s surface as aerosol source,” Tr. IEM, No. 51, 83–87 (1990).

    Google Scholar 

  43. V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Diurnal Variations of the Submicron Aerosol and Black Carbon in the Near-Ground Layer,” Atmos. Ocean. Opt. 24 (1), 30–38 (2011).

    Article  Google Scholar 

Download references

Funding

The measurements since 2010 were supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences); the data were analyzed and this publication was prepared under the support of the Russian Science Foundation (agreement no. 19-77-20 092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vas. V. Pol’kin, V. V. Pol’kin or M. V. Panchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pol’kin, V.V., Pol’kin, V.V. & Panchenko, M.V. Long-Term Observations of Aureole Scattering Phase Function in the Surface Air Layer in Suburbs of Tomsk (2010–2021). Atmos Ocean Opt 36, 121–126 (2023). https://doi.org/10.1134/S1024856023030089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023030089

Keywords:

Navigation