Skip to main content
Log in

Impact of Water Vapor Continuum Absorption on CO2 Radiative Forcing in the Atmosphere in the Lower Volga Region

  • ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The impact of water vapor continuum absorption in the atmosphere on CO2 radiative forcing is estimated on the basis of mass calculations of thermal radiative fluxes for summer conditions of 2021 in the Lower Volga Region. The set of 368 vertical atmospheric profiles (four per day over three summer months) is used for the simulation. A decrease in the CO2 contribution to the radiative impact on the Earth’s surface with an increase in the humidity is shown, which leads to weaker heating of the surface and stronger heating of the atmosphere. Thus, enhancement of the greenhouse effect due to an increase in the CO2 concentration at high humidity is to result in stronger heating of the atmosphere. The dominant role in this process belongs to the water vapor continuum, but not to the selective absorption in H2O bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Cambridge University Press, Cambridge, 2021). https://doi.org/10.1017/9781009157896

    Book  Google Scholar 

  2. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007 (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  3. J. T. Kiehl and V. Ramanathan, “Radiative heating due to increased CO2: The role of H2O continuum absorption in the 12 and 18 μm region,” J. Atmos. Sci. 39, 2923–2926 (1982). https://doi.org/10.1175/1520-0469

    Article  ADS  Google Scholar 

  4. D. J. Paynter and V. Ramaswamy, “An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transfer,” J. Geophys. Res. 116, D20302 (2011). https://doi.org/10.1029/2010JD015505

    Article  ADS  Google Scholar 

  5. D. J. Paynter and V. Ramaswamy, “Variations in water vapor continuum radiative transfer with atmospheric conditions,” J. Geophys. Res. 117, D16310 (2012). https://doi.org/10.1029/2012JD017504

    Article  ADS  Google Scholar 

  6. V. A. Mikhailova, S. V. Fes’kov, A. I. Ivanov, L. I. Grekov, A. O. Litinskii, N. N. Konobeeva, M. B, Belonenko, K. M. Firsov, T. Yu. Chesnokova, V. I. Porkhun, G. S. Ivanchenko, O. S. Lebedeva, N. G. Lebedev, V. D. Zav’yalov, and S. I. Kryuchkov, Simulation of Nonequilibrium Chemical-Physical Processes (VolGUB, Volgograd, 2018) [in Russian].

  7. E. J. Mlawer, V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, and D. C. Tobin, “Development and recent evaluation of the MT_CKD Model of continuum absorption,” Phil. Trans. R. Soc. A 370, 2520–2556 (2012).

    Article  ADS  Google Scholar 

  8. Yu. I. Baranov, W. J. Lafferty, Q. Ma, and R. H. Tipping, “Water-vapor continuum absorption in the 800–1250 cm–1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 109, 2291–2302 (2008).

    Article  ADS  Google Scholar 

  9. Yu. Baranov and W. J. Lafferty, “The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 112, 1304–1313 (2011).

    Article  ADS  Google Scholar 

  10. Yu. I. Baranov and W. J. Lafferty, “The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm–1 atmospheric windows,” Phil. Trans. R. Soc. A 370, 2578–2589 (2012).

    Article  ADS  Google Scholar 

  11. G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle, AFGL Atmospheric Constituent Profiles (0–120 km). AFGL-TR-86-0110. Environmental Research Paper No. 954 (Ford Aerospace and Communications Corporation, Hanscom AFB, Massachusetts, 1986).

  12. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tana, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, AuweraJ. Vander, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017). https://doi.org/10.1016/j.jqsrt.2017.06.038

    Article  ADS  Google Scholar 

  13. R. H. Tipping and Q. Ma, “Theory of the water vapor continuum and validations,” Atmos. Res. 36, 69–94 (1995).

    Article  Google Scholar 

  14. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Profile and Intermolecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  15. Y. Scribano and C. Leforestier, “Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum,” J. Chem. Phys. 126 (23), 234301 (2007).

    Article  ADS  Google Scholar 

  16. A. A. Vigasin, “Water vapor continuum absorption in various mixtures: Possible role of weakly bound complexes,” J. Quant. Spectrosc. Radiat. Transfer 64, 25–40 (2000).

    Article  ADS  Google Scholar 

  17. I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour self-continuum and water dimers: 1. Analysis of recent work,” J. Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011). https://doi.org/10.1016/j.jqsrt.2011.01.012

    Article  ADS  Google Scholar 

  18. M. Yu. Tretyakov, M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova, and G. M. Bubnov, “Water dimer and the atmospheric continuum,” Phys.-Uspekhi 57 (11), 1083–1098 (2014).

    Article  ADS  Google Scholar 

  19. D. E. Burch and R. L. Alt, Continuum Absorption by H 2 O in the 700–1200 cm –1 and 2400–2800 cm –1 Windows. Report AFGL-TR-84-0128 (Ford Aerospace and Communications Corporation, Hanscom AFB, Massachusetts, 1984).

  20. D. E. Burch, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases. Semi-Annual Technical Report (Philco-Ford Corporation, Newport Beach, CA, 1970).

    Book  Google Scholar 

  21. D. E. Burch and D. A. Gryvnak, Method of Calculating H 2 O Transmission Between 333 and 633 cm −1 . Final Report (Ford Aerospace and Communications Corporation, Newport Beach, CA, 1979).

  22. R. E. Roberts, J. E. A. Selby, and L. M. Biberman, “Infrared continuum absorption by atmospheric water vapor in the 8–12 micron meter window,” Appl. Opt. 15, 2085–2090 (1976).

    Article  ADS  Google Scholar 

  23. I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. P. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D16305 (2011).

    Article  ADS  Google Scholar 

  24. I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements,” Phil. Trans. R. Soc. 370, 2557–2577 (2012).

    Article  ADS  Google Scholar 

  25. K. P. Shine, I. V. Ptashnik, and G. Radel, “The water vapor continuum: Brief history and recent developments,” Surv. Geophys. 33, 535–555 (2012). https://doi.org/10.1007/s10712-011-9170-y

    Article  ADS  Google Scholar 

  26. K. M. Firsov, T. Yu. Chesnokova, and I. I. Klitochenko, “Contribution of water vapor continuum absorption to longwave radiative fluxes in the cloudy and cloudless atmosphere,” Opt. Atmos. Okeana 29 (10), 843–849 (2016).

    Google Scholar 

  27. T. Yu. Chesnokova, K. M. Firsov, and A. A. Razmolov, “Contribution of the water vapor continuum absorption to the radiation balance of the atmosphere with cirrus clouds,” Atmos. Ocean. Opt. 32 (1), 64–71 (2019).

    Article  Google Scholar 

  28. G. Radel, K. P. Shine, and I. V. Ptashnik, “Global radiative and climate effect of the water vapor continuum at visible and near-infrared wavelengths,” Q. J. R. Meteorol. Soc 141, 727–738 (2015). https://doi.org/10.1002/qj.2385

    Article  ADS  Google Scholar 

  29. V. E. Zuev and V. S. Komarov, Statistical Models of the Air Temperature and Atmospheric Gases (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  30. Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Foundations of Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  31. A. A. Lacis and V. Oinas, “A description of the k-distribution methods for modelling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres,” J. Geophys. Res. 96 (D5), 9027–9063 (1991).

    Article  ADS  Google Scholar 

  32. S. D. Tvorogov, “Some aspects of the problem of representation of the absorption function by a series of exponents,” Atmos. Ocean. Opt. 7 (3), 165–171 (1994).

    Google Scholar 

  33. A. A. Mitsel’, I. V. Ptashnik, K. M. Firsov, and B. A. Fomin, “Efficient technique for line-by-line calculating the transmittance of the absorbing atmosphere,” Atmos. Ocean. Opt. 8 (10), 1547–1551 (1995).

    Google Scholar 

  34. ECMWF ERA-5. www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. Cited July 9, 2022.

Download references

Funding

The work was supported by the Ministry of Science and Higher Education (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. M. Firsov, T. Yu. Chesnokova or A. A. Razmolov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firsov, K.M., Chesnokova, T.Y. & Razmolov, A.A. Impact of Water Vapor Continuum Absorption on CO2 Radiative Forcing in the Atmosphere in the Lower Volga Region. Atmos Ocean Opt 36, 162–168 (2023). https://doi.org/10.1134/S1024856023030053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023030053

Keywords:

Navigation