Skip to main content
Log in

Accuracy of Determination of Longitudinal Coordinates of Particles by Digital Holography

  • OPTICS OF STOCHASTICALLY-HETEROGENEOUS MEDIA
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Based on known expressions applied to diffraction-limited optics systems, estimates are given and a technique is suggested for determining the measurement error in the longitudinal coordinates of particles from images reconstructed from digital holograms. A correction factor for visual focusing is determined for different distances between a detected particle and the plane of a CMOS array. The results of experimental tests of the technique are presented. A possibility is shown of reducing the error of automatic digital focusing by means of simultaneous use of focusing curves for several quality indicators and optimization of the image area for their construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. V. V. Dyomin, A. I. Gribenyukov, A. S. Davydova, M. M. Zinoviev, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Holography of particles for diagnostics tasks [invited],” Appl. Opt. 58 (34), G300–G309 (2019).

    Article  Google Scholar 

  2. F. T. S. Yu, An Introduction To Diffraction, Information Processing, and Holography (MIT Press, Cambridge, 1973).

    Book  Google Scholar 

  3. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, New York, 1971).

    Google Scholar 

  4. V. V. Dyomin, A. I. Gribenyukov, S. N. Podzyvalov, N. N. Yudin, M. M. Zinoviev, I. G. Polovtsev, A. Yu. Davydova, and A. S. Olshukov, “Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2,” Appl. Sci. 10 (2), 442–1 (2020).

    Article  Google Scholar 

  5. N. N. Yudin, P. V. Pavlov, M. M. Zinov’ev, S. N. Podzyvalov, V. V. Dyomin, I. G. Polovtsev, I. E. Kuskov, I. E. Vol’f, A. O. Evsin, A. A. Balashov, and A. S. Kostin, “Assessment of fatigue damage of fluoroorganic aircraft glass using digital holography methods,” J. Opt. Technol. 88 (2), 72–76 (2020).

    Article  Google Scholar 

  6. O. Kemppinen, J. C. Laning, R. D. Mersmann, G. Videen, and M. J. Berg, “Imaging atmospheric aerosol particles from a UAV with digital holography,” Sci. Rep. 10, 16085 (2020).

    Article  ADS  Google Scholar 

  7. V. V. Demin, A. S. Olshukov, E. Yu. Naumova, and N. G. Melnik, “Digital holography of plankton,” Atmos. Ocean. Opt. 21 (12), 951–956 (2008).

    Google Scholar 

  8. V. Dyomin, A. Davydova, I. Polovtsev, A. Olshukov, N. Kirillov, and S. Davydov, “Underwater holographic sensor for plankton studies in situ including accompanying measurements,” Sensors 21 (4863), 1–19 (2021).

    Article  Google Scholar 

  9. P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, “3D morphometry of red blood cells by digital holography,” Cytometry A 85 (12) (2014). https://doi.org/10.1002/cyto.a.22570

  10. T. Y. Nikolaeva and N. V. Petrov, “Characterization of particles suspended in a volume of optical medium at high concentrations by coherent image processing,” Opt. Eng. 54 (8), 083101 (2015).

    Article  Google Scholar 

  11. T. A. Vovk and N. V. Petrov, “Correlation characterization of particles in volume based on peak-to-basement ratio,” Sci. Rep. 7, 43840 (2017).

    Article  ADS  Google Scholar 

  12. D. M. Scott, “Recent advances in in-process characterization of suspensions and slurries,” Powder Technol. 399, 117159 (2022).

    Article  Google Scholar 

  13. S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14, 13095–13100 (2006).

    Article  ADS  Google Scholar 

  14. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Gluckstad, “Interactive light-driven and parallel manipulation of inhomogeneous particles,” Opt. Express 10, 1550–1556 (2002).

    Article  ADS  Google Scholar 

  15. A. V. Bilsky, O. A. Gobyzov, and D. M. Markovich, “Evolution and recent trends of particle image velocimetry for an aerodynamic experiment,” Thermophys. Aeromech. 27 (1), 1–22 (2020).

    Article  ADS  Google Scholar 

  16. M. Born and E. Wolf, Principles of Optics (MIT Press Cambridge: University Press, Cambridge, 1999).

  17. V. V. Dyomin and D. V. Kamenev, “Quality criteria for holographic images of particles of various shapes,” Russ. Phys. J. 53 (9), 927–935 (2011).

    Article  Google Scholar 

  18. ISO 2602:1980 “Statistical interpretation of test results—Estimation of the mean—Confidence interval”. https://www.iso.org/standard/7585.html. Cited 1.09.2022.

  19. R. A. Fisher and M. A. Rothamsted, “Statistical methods for research workers,” Metron 5, 90 (1925).

    Google Scholar 

  20. V. V. Dyomin and D. V. Kamenev, “Evaluation of algorithms for automatic data extraction from digital holographic images of particles,” Russ. Phys. J. 58 (10), 1467–1474 (2016).

    Article  Google Scholar 

  21. W. Huang and Z. Jing, “Evaluation of focus measures in multifocus image fusion,” Pattern Recognit. Lett. 28 (4), 493–500 (2007).

    Article  ADS  Google Scholar 

  22. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, New Jersey, 2001).

    Google Scholar 

  23. A. Santos, C. Ortiz De Solorzano, J. J. Vaquera, J. M. Pena, N. Malpica, and F. del Pozo, “Evaluation of autofocus functions in molecular cytogenetic analysis,” J. Microsc. 188 (3), 264–272 (1997).

    Article  Google Scholar 

  24. V. V. Dyomin and D. V. Kamenev, “Two-dimensional representation of a digital holographic image of the volume of a medium with particles as a method of depicting and processing information concerning the particles,” J. Opt. Technol. 80 (7), 450–456 (2013).

    Article  Google Scholar 

  25. O. A. Osibote, “Automated focusing in bright-field microscopy for tuberculosis detection,” J. Microsc. 240 (2), 155–163 (2010).

    Article  MathSciNet  Google Scholar 

  26. I. V. Vatamanyuk and A. L. Ronzhin, “The use of techniques for estimating the difference in digital images in audiovisual monitoring,” Obrabotka Informatsii Upravlenie 4, 16–23 (2014).

    Google Scholar 

  27. A. Y. Davydova, V. Dyomin, and I. Polovtsev, “Evaluation of the effect of noise in a digital holographic system on the quality of reconstructed particle image,” Proc. SPIE—Int. Soc. Opt. Eng. 11560, 1156020-1 (2020).

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 20-17-00185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Yudin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyomin, V.V., Davydova, A.Y., Polovtsev, I.G. et al. Accuracy of Determination of Longitudinal Coordinates of Particles by Digital Holography. Atmos Ocean Opt 36, 113–120 (2023). https://doi.org/10.1134/S1024856023030041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023030041

Keywords:

Navigation