Skip to main content
Log in

Soil–Atmosphere Greenhouse Gas Fluxes in a Background Area in the Tomsk Region (Western Siberia)

  • ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The dynamics of greenhouse gas fluxes, measured from 2017 to 2021 at the Fonovaya Observatory of V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, is studied. It is shown that the annual average fluxes of CO2 at the Observatory varied from −283 (sink) to +31 mg m−2 h−1 (emission). A minimal emission of 1351 mg m−2 h−1 was recorded in 2019, and a maximum of 1789 mg m−2 h−1, in 2021. The lowest sink was observed in 2017 (2099 mg m−2 h−1); the largest, equal to 2304 mg m−2 h−1, was in 2018. The annual average methane fluxes ranged from −0.032 in 2018 to −0.047 mg m−2 h−1 in 2020. The daily maximal methane emission was recorded in 2018 and was equal to 0.915 mg m−2 h−1, and the daily minimal emission, in 2021 (0.095 mg m−2 h−1). The maximal sink varied from year to year in a narrower range from −0.241 to −0.361 mg m−2 h−1. The soil of the measurement area turned out to be a strong source of SO2 and CH4 and a weak source of N2O. The annual average fluxes of NO2 were in the 0.00–0.011 mg m−2 h−1 range. The interannual emission maxima weakly changed from 0.237 to 0.301 mg m−2 h−1, and sink maxima, from −0.206 to −0.245 mg m−2 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. C. O’Grady, “Warming of 1.5°C carries risk of crossing climate tipping points,” Science 377 (6611), 1135 (2022).

    Article  ADS  Google Scholar 

  2. D. I. A. McKay, A. Staal, J. F. Abrams, R. Winkelmann, B. Sakschewski, S. Loriani, I. Fetzer, S. E. Cornell, J. Rockstrom, and T. M. Lenton, “Exceeding 1.5°C global warming could trigger multiple climate tipping points,” Science 377 (6611), 1171 (2022).

    Google Scholar 

  3. “IPCC, 2021: Summary for policymakers,” in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2021), pp. 1–41.

  4. World Meteorological Organization Global Atmosphere Watch Implementation Plan: 2016–2023. Report No. 228 (WMO, 2017).

  5. A. E. Andrews, J. D. Kofler, M. E. Trudeau, J. C. Williams, D. H. Neff, K. A. Masarie, D. Y. Chao, D. R. Kitzis, P. C. Novelli, C. L. Zhao, E. J. Dlugokencky, P. M. Lang, M. J. Crotwell, M. L. Fischer, M. J. Parker, J. T. Lee, D. D. Baumann, A. R. Desai, C. O. Stanier, S. F. J. De Wekker, D. E. Wolfe, J. W. Munger, and P. P. Tans, “CO2, CO, and CH4 measurements from Tall Towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts,” Atmos. Meas. Tech. 7 (2), 647–687 (2014).

    Article  Google Scholar 

  6. K. Higuchi, D. Worthy, D. Chan, and A. Shashkov, “Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal forest site in Canada,” Tellus 55 (2), 115–125.

  7. Y. Sun, H. Yin, W. Wang, C. Shan, J. Notholt, M. Palm, K. Liu, Z. Chen, and C. Liu, “Monitoring greenhouse gases (GHGs) in China: Status and perspective,” Atmos. Meas. Tech. 15 (16), 4819–4834 (2022).

    Article  Google Scholar 

  8. N. Kadygrov, G. Broquet, F. Chevallier, L. Rivier, C. Gerbig, and P. Ciais, “On the potential of the ICOS atmospheric CO2 measurement network for estimating the biogenic CO2 budget of Europe,” Atmos. Chem. Phys. 15 (22), 12 765–12 787 (2015).

    Article  Google Scholar 

  9. M. Kulmala, H. K. Lappalainen, T. Petaja, T. Kurten, V.-M. Kerminen, Y. Viisanen, P. Hari, S. Sorvari, J. Back, V. Bondur, N. Kasimov, V. Kotlyakov, G. Matvienko, A. Baklanov, H. D. Guo, A. Ding, H.-C. Hansson, and S. Zilitinkevich, “Introduction: The Pan-Eurasian Experiment (PEEX)—multidisciplinary, multiscale and multicomponent research and capacity-building initiative,” Atmos. Chem. Phys. 15 (22), 13 085–13 096.

  10. S. Starkweather, J. R. Larsen, E. Kruemmel, H. Eicken, D. Arthurs, A. C. Bradley, N. Carlo, T. Christensen, R. Daniel, F. Danielsen, S. Kalhok, M. Karcher, M. Johansson, J. Johannsson, Y. Kodama, S. Lund, M. S. Murray, T. Petaja, P. L. Pulsifer, S. Sandven, R. D. Sankar, M. Strahlendorff, and J. Wilkinson, “Sustaining Arctic Observing Networks’ (SAON) Roadmap for Arctic Observing and Data Systems (ROADS),” Arctic 74 (2021).

  11. M. M. T. A. Pallandt, J. Kumar, M. Mauritz, E. A. G. Schuur, A.-M. Virkkala, G. Celis, F. M. Hoffman, and M. Gockede, “Representativeness assessment of the Pan-Arctic eddy covariance site network and optimized future enhancements,” Biogeosci. 19 (3), 559–583 (2022).

    Article  ADS  Google Scholar 

  12. M. V. Glagolev, “Descriptive list of references on the measurements of CH4 and CO2 fluxes from Russian swamps,” Dinamika Okruzhayushchei Sredy Global’nye Izmeneniya Klimata 1 (2), 5–57 (2010).

    Google Scholar 

  13. A. M. Alferov, V. G. Blinov, M. L. Gitarskii, V. A. Grabar, D. G. Zamolodchikov, A. V. Zinchenko, N. P. Ivanova, V. M. Ivakhov, R. T. Karabanyu, D. V. Karelin, I. L. Kalyuzhnyi, F. V. Kashin, D. E. Konyushkov, V. N. Korotkov, V. A. Krovotyntsev, S. A. Lavrov, A. S. Marunich, N. N. Paramonova, A. A. Romanovskaya, A. A. Trunov, A. V. Shilkin, and A. K. Yuzbekov, Monitoring of Greenhouse Gas Fluxes in Natural Ecosystems (Amirit, Saratov, 2017) [in Russian].

    Google Scholar 

  14. R. F. Grant and N. T. Roulet, “Methane efflux from boreal wetlands: Theory and testing of the ecosystem model ECOSYS with chamber and tower flux measurements,” Global Biogeochem. Cycles 16 (4), 1054 (2002).

    Article  ADS  Google Scholar 

  15. A. V. Smagin, M. V. Glagolev, G. G. Suvorov, and N. A. Shnyrev, “Methods for studying gas fluxes and the composition of soil air in field conditions using a portable PGA-7 Gas Analyzer,” Vestn. MGU. Ser. Pochvovedenie, No. 3, 29–36 (2003).

    Google Scholar 

  16. M. V. Glagolev, “On the “inverse problem” method for determining the surface density of a gas flux from soil,” Dinamika Okruzhayushchei Sredy Global’nye Izmeneniya Klimata 1 (1), 17–36 (2010).

    Google Scholar 

  17. P. Pavelka, M. Acosta, R. Kiese, N. Altimir, C. Brümmer, P. Crill, E. Darenova, R. Fuß, B. Gielen, A. Graf, L. Klemedtsson, A. Lohila, B. Longdoz, A. Lindroth, M. Nilsson, S. M. Jimenez, L. Merbold, L. Montagnani, M. Peichl, M. Mari Pihlatie, J. Pumpanen, P. S. Ortiz, H. Silvennoinen, U. Skiba, P. Vestin, P. Weslien, D. Janous, and W. Kutsch, “Standardisation of chamber technique for CO2, N2O, and CH4 fluxes measurements from terrestrial ecosystems,” Int. Agrophys. 32 (12), 569–587 (2018).

    Article  Google Scholar 

  18. M. Riederer, A. Serafimovich, and T. Foken, “Net ecosystem CO2 exchange measurements by the closed chamber method and the eddy covariance technique and their dependence on atmospheric conditions,” Atmos. Meas. Tech. 7 (4), 1057–1064 (2014).

    Article  Google Scholar 

  19. Y. You, R. M. Staebler, S. G. Moussa, J. Beck, and R. L. Mittermeier, “Methane emissions from an oil sands tailings pond: A quantitative comparison of fluxes derived by different methods,” Atmos. Meas. Tech. 14 (3), 1879–1892 (2021).

    Article  Google Scholar 

  20. X. Wang, C. Wang, and B. Bond-Lamberty, “Quantifying and reducing the differences in forest CO2-fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis,” Agric. For. Meteorol. 247, 93–103 (2017).

    Article  ADS  Google Scholar 

  21. K. Wang, C. Liu, X. Zheng, M. Pihlatie, B. Li, S. Haapanala, T. Vesala, H. Liu, Y. Wang, G. Liu, and F. Hu, “Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields,” Biogeosci. 10 (11), 6865–6877 (2013).

    Article  ADS  Google Scholar 

  22. B. B. Almand-Hunter, J. T. Walker, N. P. Masson, L. Hafford, and M. P. Hannigan, “Development and validation of inexpensive, automated, dynamic flux chambers,” Atmos. Meas. Tech. 8 (1), 267–280 (2015).

    Article  Google Scholar 

  23. V. V. Antonovich, P. N. Antokhin, M. Yu. Arshinov, B. D. Belan, Yu. S. Balin, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, V. S. Kozlov, G. P. Kokhanenko, M. M. Novoselov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, D. E. Savkin, D. V. Simonenkov, G. N. Tolmachev, A. V. Fofonov, D. G. Chernov, V. P. Smargunov, E. P. Yausheva, J.-D. Paris, G. Ancellet, K. S. Law, J. Pelon, T. Machida, and M. Sasakawa, “Station for the comprehensive monitoring of the atmosphere at Fonovaya Observatory, West Siberia: Current status and future needs,” Proc. SPIE—Int. Soc. Opt. Eng. 10833, 108337 (2018).

  24. B. D. Belan, M. Yu. Arshinov, D. K. Davydov, A. V. Kozlov, and G. A. Ivlev, RF Patent No. 169373 (March 15, 2017).

  25. P. Friedlingstein, M. W. Jones, M. O’Sullivan, R. M. Andrew, J. Hauck, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Quere, D. C. E. Bakker, J. G. Canadell, P. Ciais, R. B. Jackson, P. Anthoni, L. Barbero, A. Bastos, V. Bastrikov, M. Becker, L. Bopp, E. Buitenhuis, N. Chandra, F. Chevallier, L. P. Chini, K. I. Currie, R. A. Feely, M. Gehlen, D. Gilfillan, T. Gkritzalis, D. S. Goll, N. Gruber, S. Gutekunst, I. Harris, V. Haverd, R. A. Houghton, G. Hurtt, T. Ilyina, A. K. Jain, E. Joetzjer, J. O. Kaplan, E. Kato, K. K. Goldewijk, J. I. Korsbakken, P. Landschutzer, S. K. Lauvset, N. Lefevre, A. Lenton, S. Lienert, D. Lombardozzi, G. Marland, P. C. McGuire, J. R. Melton, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S.-I. Nakaoka, C. Neill, A. M. Omar, T. Ono, A. Peregon, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. Rodenbeck, R. Seferian, J. Schwinger, N. Smith, P. P. Tans, H. Tian, B. Tilbrook, F. N. Tubiello, G. R. van der Werf, A. J. Wiltshire, and S. Zaehle, “Global carbon budget 2019,” Earth Syst. Sci. Data 11 (4), 1783–1838 (2019).

    Article  ADS  Google Scholar 

  26. T. F. Keenan, X. Luo, M. G. De Kauwe, B. E. Medlyn, I. C. Prentice, B. D. Stocker, N. G. Smith, C. Terrer, H. Wang, Y. Zhang, and S. Zhou, “A constraint on historic growth in global photosynthesis due to increasing CO2,” Nature 600 (7888), 253–257 (2021).

    Article  ADS  Google Scholar 

  27. R. Wehr, J. W. Munger, J. B. McManus, D. D. Nelson, M. S. Zahniser, E. A. Davidson, S. C. Wofsy, and S. R. Saleska, “Seasonality of temperate forest photosynthesis and daytime respiration,” Nature 534 (7609), 680–683 (2016).

    Article  ADS  Google Scholar 

  28. E. N. Mishustin, Nitorgen Cycle and Its Compounds in Nature. Role of Microorganisms in Natural Gaseous Cycle (Nauka, Moscow, 1979), pp. 68–91 [in Russian].

    Google Scholar 

  29. A. Schindlbacher, S. Zechmeister-Boltenstern, and K. Butterbach-Bahl, “Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soil,” J. Geophys. Res. 109, D17302 (2004).

    Article  ADS  Google Scholar 

  30. K. Pilegaard, U. Skiba, P. Ambus, C. Beier, N. Bruggemann, K. Butterbach-Bahl, J. Dick, J. Dorsey, J. Duyzer, M. Gallagher, R. Gasche, L. Horvath, B. Kitzler, A. Leip, M. K. Pihlatie, P. Rozenkranz, G. Seufert, T. Vesala, H. Westrate, and N. Zechmeister-Boltenster, “Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and NO2),” Biogeosci. 3 (4), 651–661 (2006).

    Article  ADS  Google Scholar 

  31. S. E. Machefert, N. B. Dise, K. W. T. Goulding, and P. G. Whitehead, “Nitrous oxide emissions from two riparian ecosystems: Key controlling variables,” Water, Air, Soil Pollut.: Focus 4 (2–3), 427–436 (2004).

    Article  Google Scholar 

  32. O. A. Krasnov, Sh. Maksyutov, D. K. Davydov, A. V. Fofonov, M. V. Glagolev, and G. Inoue, “Monitoring of methane and carbon dioxide emission from soil to atmosphere and soil parameters. Bakchar bog of Tomsk region (2014),” Opt. Atmos. Okeana 28 (7), 630–637 (2015).

    Google Scholar 

  33. M. V. Glagolev, D. V. Ilyasov, I. E. Terentyeva, A. F. Sabrekov, O. A. Krasnov, and Sh. Sh. Maksyutov, “Methane and carbon dioxide fluxes in the waterlogged forests of Western Siberian southern and middle taiga subzones,” Opt. Atmos. Okeana 30 (4), 301–309 (2017).

    Google Scholar 

  34. S. Serikova, O. S. Pokrovsky, P. Ala-Aho, V. Kazantsev, S. N. Kirpotin, S. G. Kopysov, I. V. Krickov, H. Laudon, R. M. Manasypov, L. S. Shirokova, C. Soulsby, D. Tetzlaff, and J. Karlsson, “High riverine CO2 emissions at the permafrost boundary of Western Siberia,” Nature Geosci. 11 (11), 825–829 (2018).

    Article  ADS  Google Scholar 

  35. P. Mustamo, M. Maljanen, M. Hyvarinen, A.-K. Ronkanen, and B. Klove, “Respiration and emissions of methane and nitrous oxide from a boreal peatland complex comprising different land-use types,” Boreal Environ. Res. 21 (5-6), 405–426 (2016).

    Google Scholar 

  36. M. Glagolev, I. Kleptsova, I. Filippov, S. Maksyutov, and T. Machida, “Regional methane emission from West Siberia mire landscapes,” Environ. Res. Lett. 6 (4), 045214 (2011).

    Article  ADS  Google Scholar 

  37. A. F. Sabrekov, B. R. K. Runkle, M. V. Glagolev, I. E. Kleptsova, and S. S. Maksyutov, “Seasonal variability as a source of uncertainty in the West Siberian regional CH4 flux upscaling,” Environ. Res. Lett. 9 (4), 045008 (2014).

    Article  ADS  Google Scholar 

  38. A. F. Sabrekov, B. R. K. Runkle, M. V. Glagolev, I. E. Terentieva, V. M. Stepanenko, O. R. Kotsyurbenko, S. S. Maksyutov, and O. S. Pokrovsky, “Variability in methane emissions from West Siberia’s shallow boreal lakes on a regional scale and its environmental controls,” Biogeosci. 14 (15), 3715–3742 (2017).

    Article  ADS  Google Scholar 

  39. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, Sh. Sh. Maksutov, and A. V. Fofonov, “Comparison of flows of greenhouse gases at the atmosphere—soil interface for three areas of the Tomsk region,” Proc. SPIE—Int. Soc. Opt. Eng. 11560, 115607 (2020).

  40. E. Saikawa, R. G. Prinn, E. Dlugokencky, K. Ishijima, G. S. Dutton, B. D. Hall, R. Langenfelds, T. Tohjima, T. Machida, M. Manizza, M. Rigby, S. O’Doherty, P. K. Patra, C. M. Harth, R. F. Weiss, P. B. Krummel, M. van der Schoot, P. J. Fraser, L. P. Steele, S. Aoki, T. Nakazawa, and J. W. Elkins, “Global and regional emissions estimates for N2O,” Atmos. Chem. Phys. 14 (9), 4617–4641 (2014).

    Article  ADS  Google Scholar 

  41. R. L. Thompson, L. Lassaletta, P. K. Patra, C. Wilson, K. C. Wells, A. Gressent, E. N. Koffi, M. P. Chipperfield, W. Winiwarter, E. A. Davidson, H. Tian, and J. G. Canadell, “Acceleration of global N2O emissions seen from two decades of atmospheric inversion,” Nat. Clim. Change 9 (12), 993–998 (2019).

    Article  ADS  Google Scholar 

  42. R. Maier, L. Hortnag, and N. Buchmann, “Greenhouse gas fluxes (CO2, N2O, and CH4) of pea and maize during two cropping seasons: Drivers, budgets, and emission factors for nitrous oxide,” Sci. Total Environ. 849, 157541 (2022).

    Article  ADS  Google Scholar 

  43. Y. Gong, J. Wu, J. Vogt, T. B. Le, and T. Yuan, “Combination of warming and vegetation composition change strengthens the environmental controls on N2O fluxes in a boreal peatland,” Atmosphere 9 (12), 480 (2018).

    Article  ADS  Google Scholar 

  44. B. A. Tangen and A. Bansa, “Prairie wetlands as sources or sinks of nitrous oxide: effects of land use and hydrology,” Agric. For. Meteorol. 320, 108968 (2022).

    Article  ADS  Google Scholar 

  45. E. G. Wangari, R. M. Mwanake, D. Kraus, C. Werner, G. M. Gettel, R. Kiese, L. Breuer, K. Butterbach-Bahl, and T. Houska, “Number of chamber measurement locations for accurate quantification of landscape-scale greenhouse gas fluxes: Importance of land use, seasonality, and greenhouse gas type,” J. Geophys. Res.: Biogeosci. 127 (9) (2022).

  46. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, O. A. Krasnov, Sh. Sh. Macsutov, T. Machida, M. Sasakawa, and A. V. Fofonov, “Peculiarities of the vertical distribution of carbon dioxide over Southwestern Siberia in the summer season,” Opt. Atmos. Okeana 31 (8), 670–681 (2018).

    Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Belan.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshinov, M.Y., Belan, B.D., Davydov, D.C. et al. Soil–Atmosphere Greenhouse Gas Fluxes in a Background Area in the Tomsk Region (Western Siberia). Atmos Ocean Opt 36, 152–161 (2023). https://doi.org/10.1134/S1024856023030028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023030028

Keywords:

Navigation