Skip to main content
Log in

Information Content of the Ground-Based FTIR Method for Atmospheric HNO3 Vertical Structure Retrieval

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Nitric acid plays an important role in atmospheric chemistry; for this reason, it is currently monitored by various methods and instruments. The ground-based FTIR method based on spectral measurements of solar radiation by Bruker Optics IFS 125HR spectrometers allows one to retrieve not only the total column HNO3 but also its content in individual atmospheric layers. Analysis of HNO3 content series at the St. Petersburg NDACC site between 2009 and 2021 shows that the spectroscopic measurements under consideration contain about three independent parameters on the average, which makes it possible to obtain information about the HNO3 content in several layers of the atmosphere. The mean random errors of HNO3 measurements amount to 3.9, 14, and 1.6% for the total atmospheric, tropospheric (up to 15 km), and stratospheric (above 15 km) content, respectively. Thus, the FTIR method considered is more sensitive to changes in the stratospheric HNO3 content. The absorption of solar radiation by nitric acid in the measured spectra overlaps with the absorption by water vapor; therefore, the information content and accuracy of HNO3 measurements are maximal in winter and minimal in summer: in winter, measurements are carried out mainly at low sun and low humidity; in summer, vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. S. Solomon, “Stratospheric ozone depletion: A review of concepts and history,” Rev. Geophys. 37 (3), 275–316 (1999).

    Article  ADS  Google Scholar 

  2. Scientific Assessment of Ozone Depletion: 2002. World Meteorological Organization Global Ozone Research and Monitoring Project. Rep. No. 47 (WMO, UNEP, Geneva, 2003).

  3. S. P. Smyshlyaev, V. Ya. Galin, G. Shaariibuu, and M. A. Motsakov, “Modeling the variability of gas and aerosol components in the stratosphere of polar regions,” Izv., Atmos. Ocean. Phys. 46 (3), 265–280 (2010).

    Article  Google Scholar 

  4. NCAR. Atmospheric chemistry observation & modeling. https://www2.acom.ucar.edu/irwg. Cited July 3, 2022.

  5. S. W. Wood, R. L. Batchelor, A. Goldman, C. P. Rinsland, B. J. Connor, F. J. Murcray, T. M. Stephen, and D. N. Heuff, “Ground-based nitric acid measurements at arrival heights, Antarctica, using solar and lunar Fourier transform infrared observations,” J. Geophys. Res.: Atmos. 109, D18307 (2004).

    Article  ADS  Google Scholar 

  6. G. Ronsmans, B. Langerock, C. Wespes, J. W. Hannigan, F. Hase, T. Kerzenmacher, E. Mahieu, M. Schneider, D. Smale, D. Hurtmans, M. De Maziere, C. Clerbaux, and P.-F. Coheur, “First characterization and validation of FORLI-HNO3 vertical profiles retrieved from IASI/Metop,” Atmos. Meas. Tech. 9 (9), 4783–4801 (2016).

    Article  Google Scholar 

  7. H. Nakajima, I. Murata, Y. Nagahama, H. Akiyoshi, K. Saeki, T. Kinase, M. Takeda, Y. Tomikawa, E. Dupuy, and N. B. Jones, “Chlorine partitioning near the polar vortex edge observed with ground-based FTIR and satellites at Syowa station, Antarctica, in 2007 and 2011,” Atmos. Chem. Phys. 20 (2), 1043–1074 (2020).

    Article  ADS  Google Scholar 

  8. Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Polyakov, D. V. Ionov, A. V. Poberovskii, H. K. Imhasin, and O. Kirner, “Comparing data obtained from ground-based measurements of the total contents of O3, HNO3,HCl, and NO2 and from their numerical simulation,” Izv., Atmos. Ocean. Phys. 52 (1), 57–65 (2016).

    Article  Google Scholar 

  9. Ya. A. Virolainen, A. V. Polyakov, and Yu. M. Timofeyev, “Analysis of the variability of stratospheric gases near St. Petersburg using ground-based spectroscopic measurements,”, ” Izv., Atmos. Ocean. Phys. 57 (2), 148–158 (2021).

    Article  Google Scholar 

  10. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific Publishing, Singapore, 2000).

    Book  MATH  Google Scholar 

  11. B. J. Connor, V. Sherlock, G. Toon, D. Wunch, and P. O. Wennber, “GFIT2: An experimental algorithm for vertical profile retrieval from near-IR spectra,” Atmos. Meas. Tech. 9 (8), 3513–3525 (2016).

    Article  Google Scholar 

  12. M. Schneider, T. Blumenstock, M. T. Chipperfield, F. Hase, W. Kouker, T. Reddmann, R. Ruhnke, E. Cuevas, and H. Fischer, “Subtropical trace gas profiles determined by ground-based FTIR spectroscopy at Izana (28° N, 16° W): Five-year record, error analysis, and comparison with 3-D CTMs,” Atmos. Chem. Phys. 5 (1), 153–167 (2005).

    Article  ADS  Google Scholar 

  13. C. Senten, M. De Maziere, G. Vanhaelewyn, and C. Vigouroux, “Information operator approach applied to the retrieval of the vertical distribution of atmospheric constituents from ground-based high-resolution FTIR measurements,” Atmos. Meas. Tech. 5 (1), 161–180 (2012).

    Article  Google Scholar 

  14. C. Vigouroux, M. De Maziere, Q. Errera, S. Chabrillat, E. Mahieu, P. Duchatelet, S. Wood, D. Smale, S. Mikuteit, T. Blumenstock, F. Hase, and N. Jones, “Comparisons between ground-based FTIR and MIPAS N2O and HNO3 profiles before and after assimilation in BASCOE,” Atmos. Chem. Phys. 7 (2), 377–396 (2007).

    Article  ADS  Google Scholar 

  15. C. Shan, H. Zhang, W. Wang, C. Liu, Y. Xie, Q. Hu, and N. Jones, “Retrieval of stratospheric HNO3 and HCl based on ground-based high-resolution Fourier transform spectroscopy,” Remote Sens. 13 (11), 2159 (2021).

    Article  Google Scholar 

  16. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.‑P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, AhmadiN. Moazzen, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and Auwera J. Vander, “The HITRAN2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110 (9-10), 533–572 (2009).

    Article  ADS  Google Scholar 

  17. H. Hase, J. W. Hannigan, M. T. Coffey, A. Goldman, M. Hoepfner, N. B. Jones, C. P. Rinsland, and S. W. Wood, “Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements,” J. Quant. Spectrosc. Radiat. Transfer 87 (1), 25–52 (2004).

    Article  ADS  Google Scholar 

  18. M. Park, W. J. Randel, D. E. Kinnison, L. K. Emmons, P. F. Bernath, K. A. Walker, C. D. Boone, and M. J. Livesey, “Hydrocarbons in the upper troposphere and lower stratosphere observed from ACE-FTS and comparisons with WACCM,” J. Geophys. Res. Atmos. 118 (4), 1964–1980 (2013).

    Article  ADS  Google Scholar 

  19. P. F. Bernath, J. Crouse, R. C. Hughes, and C. D. Boone, “The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) Version 4.1 retrievals: Trends and seasonal distributions,” J. Quant. Spectrosc. Radiat. Transfer 259, 107409 (2021).

    Article  Google Scholar 

  20. https://mls.jpl.nasa.gov/eos-aura-mls/data-products/ hno3. Cited July 3, 2022.

  21. A. Polyakov, A. Poberovsky, M. Makarova, Y. Virolainen, Y. Timofeyev, and A. Nikulina, “Measurements of CFC-11, CFC-12, and HCFC-22 total columns in the atmosphere at the St. Petersburg site in 2009–2019,” Atmos. Meas. Tech. 14 (8), 5349–5368 (2021).

    Article  Google Scholar 

  22. Y. Virolainen, Y. Timofeyev, I. Berezin, A. Poberovsky, A. Polyakov, N. Zaitsev, and H. Imhasin, “Atmospheric integrated water vapour measured by IR and MW techniques at the Peterhof site (Saint Petersburg, Russia),” Intern. J. Rem. Sens. 37 (16), 3771–3785 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The measured spectra were obtained using the scientific equipment of the Geomodel Resource Center, St. Petersburg State University.

Funding

Processing of spectral data was supported by the Ministry of Science and Higher Education of the Russian Federation (megagrant no. 075-15-2021-583). Analysis of the vertical resolution of the FTIR method was supported by the Russian Foundation for Basic Research (project no. 20-05-00627).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Poberovsky or A. V. Polyakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virolainen, Y.A., Timofeyev, Y.M., Poberovsky, A.V. et al. Information Content of the Ground-Based FTIR Method for Atmospheric HNO3 Vertical Structure Retrieval. Atmos Ocean Opt 36, 24–29 (2023). https://doi.org/10.1134/S102485602302015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602302015X

Keywords:

Navigation