Skip to main content
Log in

Optical Thickness of the Atmosphere above the Terskol Peak

  • ADAPTIVE AND INTEGRAL OPTICS
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Estimates of the optical thickness of the atmosphere above the Terskol Peak are presented. The optical thickness is represented as a quantity depending on absorption coefficients determined mainly by water vapor and oxygen. The calculations are carried out under a clear sky without regard to aerosol components. Water vapor variations are considered as the main factor determining the radiation attenuation in the atmosphere in the millimeter and submillimeter spectrum ranges. The average optical thickness of the atmosphere is estimated with the use of the MPM Liebe and MOLIERE models (in the JPL and HITRAN configurations) for frequencies of 100, 150, and 225 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. D. Zhu, K. Zhang, L. Yang, S. Wu, and L. Li, “Evaluation and calibration of Modis near-infrared precipitable water vapor over China using GNSS observations and ERA-5 reanalysis dataset,” Remote Sens. 13 (14), 2761 (2021). https://doi.org/10.3390/rs13142761

    Article  ADS  Google Scholar 

  2. S. Manandhar, Y. H. Lee, Y. S. Meng, F. Yuan, and J. T. Ong, “GPS-derived PWV for rainfall nowcasting in tropical region,” IEEE Trans. Geosci. Remote Sens. 56 (8), 4835–4844 (2018). https://doi.org/10.1109/TGRS.2018.2839899

    Article  ADS  Google Scholar 

  3. Q. Zhao, X. Ma, W. Yao, Y. Liu, and Y. Yao, “A drought monitoring method based on precipitable water vapor and precipitation,” J. Clim. 33, 10727–10741 (2020). https://doi.org/10.1175/JCLI-D-19-0971.1

    Article  ADS  Google Scholar 

  4. X. Wang, K. Zhang, S. Wu, Z. Li, Y. Cheng, L. Li, and H. Yuan, “The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Nino–Southern Oscillation,” Remote Sens. Environ. 216, 1–12 (2018). https://doi.org/10.1016/j.rse.2018.06.029

    Article  ADS  Google Scholar 

  5. M. A. Obregon, A. Serrano, M. J. Costa, and A. M. Silva, “Global spatial and temporal variation of the combined effect of aerosol and water vapour on solar radiation,” Remote Sens. 13, 708 (2021). https://doi.org/10.3390/rs13040708

    Article  ADS  Google Scholar 

  6. G. Marchiori, F. Rampini, M. Tordi, M. Spinola, and R. Bressan, “Towards the Eurasian Submillimeter Telescope (ESMT): Telescope concept outline and first results,” in Proc. of the All-Russian Conference “Ground-Based Astronomy in Russia. 21st Century,” Ed. by I. I. Romanyuk, I. A. Yakunin, A. F. Valeev, and D. O. Kudryavtsev (Special Astrophysical Observatory, Ruassian Academy of Sciences, 2020), pp. 378–383. ISBN 978-5-6045062-0-2.

  7. V. Khaikin, M. Lebedev, V. Shmagin, I. Zinchenko, V. Vdovin, G. Bubnov, V. Edelman, G. Yakopov, A. Shikhovtsev, G. Marchiori, M. Tordi, R. Duan, and D. Li, “On the Eurasian SubMillimeter Telescopes project (ESMT),” in Proc. of the 7th All-Russian Microwave Conference (RMC) (Moscow, 2020), pp. 47–51. https://doi.org/10.1109/RMC50626.2020.9312233

  8. G. M. Bubnov, E. B. Abashin, Y. Y. Balega, O. S. Bolshakov, S. Y. Dryagin, V. K. Dubrovich, A. S. Marukhno, V. I. Nosov, V. F. Vdovin, and I. I. Zinchenko, “Searching for new sites for THz observations in Eurasia,” IEEE Trans. Terahertz Sci. Technol. 5 (1), 64–72 (2015). doi. 2380473https://doi.org/10.1109/TTHZ.2014

  9. Y. Balega, G. Bubnov, M. Glyavin, A. Gunbin, D. Danilevsky, G. Denisov, A. Khudchenko, I. Lesnov, A. Marukhno, K. Mineev, S. Samsonov, G. Shanin, and V. Vdovin, “Atmospheric propagation studies and development of new instrumentation for astronomy, radar, and telecommunication applications in the subterahertz frequency range,” Appl. Sci. 12, 5670 (2022). https://doi.org/10.3390/app12115670

    Article  Google Scholar 

  10. S. Z. Ziv, Y. Yair, P. Alpert, L. Uzan, and Y. Reuveni, “The diurnal variability of precipitable water vapor derived from GPS tropospheric path delays over the Eastern Mediterranean,” Atmos. Res. 249, 05307 (2021). https://doi.org/10.1016/j.atmosres.2020.105307

    Article  Google Scholar 

  11. W. Zhang, H. Zhang, H. Liang, Y. Lou, Y. Cai, Y. Cao, Y. Zhou, and W. Liu, “On the suitability of ERA5 in hourly GPS precipitable water vapor retrieval over China,” J. Geod. 93, 1897–1909 (2019). https://doi.org/10.1007/s00190-019-01290-6

    Article  ADS  Google Scholar 

  12. B. Torres, V. E. Cachorro, C. Toledano, J. P.Ortiz De Galisteo, A. Berjon, A. M. De Frutos, Y. Bennouna, and N. Laulainen, “Precipitable water vapor characterization in the Gulf of Cadiz Region (Southwestern Spain) based on sun photometer, GPS, and radiosonde data,” J. Geophys. Res. Atmos. 115 (18), D18103 (2010). https://doi.org/10.1029/2009JD012724

    Article  ADS  Google Scholar 

  13. S. A. Sitnov and I. I. Mokhov, “Water-vapor content in the atmosphere over European Russia during the summer 2010 fires,” Izv., Atmos. Ocean. Phys. 49 (4), 380–394 (2013).

    Article  Google Scholar 

  14. S. Wang, T. Xu, W. Nie, C. Jiang, Y. Yang, Z. Fang, M. Li, and Z. Zhang, “Evaluation of precipitable water vapor from five reanalysis products with ground-based GNSS observations,” Remote Sens. 12, 1817 (2020). https://doi.org/10.3390/rs12111817

    Article  ADS  Google Scholar 

  15. J. Jiang, T. Zhou, and W. Zhang, “Evaluation of satellite and reanalysis precipitable water vapor data sets against radiosonde observations in Central Asia,” Earth Space Sci. 6, 1129–1148 (2019). https://doi.org/10.1029/2019EA000654

    Article  ADS  Google Scholar 

  16. Q. Zhao, Y. Yao, W. Yao, and S. Zhang, “GNSS-derived PWV and comparison with radiosonde and ECMWF ERA-Interim data over mainland China,” J. Atmos. Sol.-Terr. Phys. 182, 85–92 (2019). https://doi.org/10.1016/j.jastp.2018.11.004

    Article  ADS  Google Scholar 

  17. A. Yu. Shikhovtsev, V. B. Khaikin, A. P. Mironov, and P. G. Kovadlo, “Statistical analysis of the water vapor content in North Caucasus and Crimea,” Atmos. Ocean. Opt. 35 (3), 168–175 (2022).

    Article  Google Scholar 

  18. A. Y. Shikhovtsev, P. G. Kovadlo, V. B. Khaikin, V. V. Nosov, V. P. Lukin, E. V. Nosov, A. V. Torgaev, A. V. Kiselev, and M. Y. Shikhovtsev, “Atmospheric conditions within Big Telescope Alt-Azimuthal region and possibilities of astronomical observations,” Remote Sens. 14, 1833 (2022). https://doi.org/10.3390/rs14081833

    Article  ADS  Google Scholar 

  19. ECMWF Reanalysis v5 (ERA-5). Germany, 2022. https://ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. Cited January 10, 2022.

  20. H. Hersbach, B. Bell, P. Berrisford, S. Harahara, A. Horanui, J. Munoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Holm, M. Janiskova, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J.-N. Thepaut, “The ERA-5 global reanalysis,” Quant. J. Roy. Meteorol. Soc. 146 (730), 1999–2049 (2020).

    Article  ADS  Google Scholar 

  21. G. Bubnov, V. Vdovin, V. Khaikin, P. Tremblin, and P. Baron, “Analysis of variations in factors of specific absorption of sub-terahertz waves in the Earth’s atmosphere,” in Proc. of the 7th All-Russian Microwave Conference (RMC) (Moscow, 2020), pp. 229–232. https://doi.org/10.1109/RMC50626. 2020.9312314

  22. P. Baron, J. Mendrok, K. Yasuko, O. Satoshi, S. Takamasa, S. Kazutoshi, S. Kosai, S. Hideo, and J. Urban, “AMATERASU: Model for Atmospheric TeraHertz Radiation Analysis and Simulation,” J. Nat. Inst. Inform. Commun. Technol. 55 (1), 109–121 (2008).

    Google Scholar 

  23. H. J. Liebe, “MPM—an atmospheric Millimeter-wave Propagation Mode,” Int. J. Infrared Millimeter Wave 10 (6), 631–650 (1989).

    Article  ADS  Google Scholar 

  24. H. J. Liebe, G. A. Hufford, and M. G. Cotton, “Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz,” in Proc. NATO (AGARD, 1993).

  25. A. I. Zakharov and E. S. Kuvalkin, “Software implementation of the technique for calculation of radio signal attenuation in atmospheric gases for satellite communication,” Vestn. Baltiiskogo Fed. Univ. im. I. Kanta. Ser. Fiz.-Mat. Tekhn. Nauki 1, 18–27 (2019).

    Google Scholar 

  26. V. V. Tatarskii, M. S. Tatarskaia, and Ed. R. Westwater, “Statistical retrieval of humidity profiles from precipitable water vapor and surface measurements of humidity and temperature,” J. Atmos. Ocean. Technol. 1 (13), 165–174 (1996).

    Article  Google Scholar 

  27. A. Shyam, B. S. Gohil, and S. Basu, “Retrieval of water vapour profiles from radio occultation refractivity using artificial neural network,” Ind. J. Radio Space Phys. 42 (6), 411–419 (2013).

    Google Scholar 

  28. G. M. Bubnov, V. F. Grigor’ev, I. I. Zinchenko, P. M. Zemlyanukha, G. N. Il’in, D. M. Kabanov, V. I. Nosov, and V. F. Vdovin, “Consistent determination of the integral humidity and effective optical depth of the atmosphere in the millimeter wavelength range using wideband radiometers,” Izv. Vyssh. Ucheb. Zaved. Radiofiz. 62 (12), 920–931 (2019).

    Google Scholar 

  29. I. E. Arsaev, V. Yu. Bykov, G. N. Il’in, and E. F. Yurchuk, “Water vapor radiometer: Measuring instrument of atmospheric brightness temperature,” Meas. Tech. 60 (5), 1–8 (2017).

    Article  Google Scholar 

  30. A. S. Marukhno, G. M. Bubnov, V. F. Vdovin, O. V. Voziakova, P. M. Zemlyanukha, I. I. Zinchenko, M. G. Mingaliev, and N. I. Shatsky, “Analysis of the millimeter-band astroclimate at the Caucasus Mountain Observatory,” in Proc. of the 7th All-Russian Microwave Conference (RMC) (Moscow, 2020), pp. 184–188. https://doi.org/10.26119/978-5-6045062-0-2_2020_184

Download references

ACKNOWLEDGMENTS

We are very grateful to the anonymous reviewer for the valuable comments.

Funding

This study was supported by the Russian Science Foundation (project no. 22-72-00049, https://rscf.ru/project/22-72-00049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Shikhovtsev, V. B. Khaikin, P. G. Kovadlo or P. Baron.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shikhovtsev, A.Y., Khaikin, V.B., Kovadlo, P.G. et al. Optical Thickness of the Atmosphere above the Terskol Peak. Atmos Ocean Opt 36, 78–85 (2023). https://doi.org/10.1134/S1024856023020148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023020148

Keywords:

Navigation