Skip to main content
Log in

Statistical Simulation of Characteristics of an Optical Communication Channel Based on Scattered Radiation with an Unmanned Aerial Vehicle

  • OPTICAL WAVES PROPAGATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A model of an optical communication atmospheric channel based on scattered radiation between the ground surface and an unmanned aerial vehicle (UAV) is considered. Changes in the useful signal attenuation, the minimal energy per source pulse providing the stable communication, and the maximal data transfer rate versus the optical and geometrical conditions for communication channel generation are estimated by the Monte Carlo method. Based on the results, recommendations are formulated for the choice of optimal schemes of optical systems of communication based on scattered radiation with a UAV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Liu Zhanwei, Huang Yiwen, Liu Haigang, and Chen Xianfeng, “Non-line-of-sight optical communication based on orbital angular momentum,” Opt. Lett. 46, 5112–5115 (2021).

    Article  ADS  Google Scholar 

  2. A. Hamza, J. S. Deogun, and D. Alexander, “Classification framework for free space optical communication links and systems,” IEEE Commun. Sur. & Tutorials 21 (2), 1346–1382 (2019).

    Article  Google Scholar 

  3. S. Arya and Y. H. Chung, “Novel optical scattering-based V2V doi with experimental analysis,” IEEE Trans. Intell. Transportation Syst., 1–15 (2022). https://doi.org/10.1109/TITS.2022.314543710.1109/TITS.2022.3145437https://doi.org/10.1109/COMST.2018.2876805communications

  4. R. J. Drost and B. M. Sadler, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29 (8), 11 (2014). https://doi.org/10.1088/0268-1242/29/8/084006

    Article  Google Scholar 

  5. K. Dautov, N. Kalikulov, and R. C. Kizilirmak, “The impact of various weather conditions on vertical FSO links,” in Proc. of the 11th IEEE International Conference “Application of Information and Communication Technologies” (AICT) (2017), pp. 1–4. https://doi.org/10.1109/ICAICT.2017.8687029 (2017).

  6. W. Fawaz, C. Abou-Rjeily, and C. Assi, “UAV-aided cooperation for FSO communication systems,” IEEE Commun. Magazine 56 (1), 70–75 (2018). https://doi.org/10.1109/MCOM.2017.1700320

    Article  Google Scholar 

  7. A. Mondal and A. Hossain, “Channel characterization and performance analysis of unmanned aerial vehicle-operated communication system with multihop radio frequency-free-space optical link in dynamic environment,” Int. J. Commun. Syst. 33 (8), e4568 (2020). https://doi.org/10.1002/dac.4568

    Article  Google Scholar 

  8. M. T. Dabiri, S. M. S. Sadough, and I. S. Ansari, “Tractable optical channel modeling between UAVs,” IEEE Trans. Veh. Technol. 68 (12), 11543–11550 (2019). https://doi.org/10.1109/TVT.2019.2940226

    Article  Google Scholar 

  9. M. Li, Y. Hong, C. Zeng, Y. Song, and X. Zhang, “Investigation on the UAV-to-satellite optical communication systems,” IEEE J. Select. Areas Commun. 36 (9), 2128–2138 (2018). https://doi.org/10.1109/JSAC.2018.2864419

    Article  Google Scholar 

  10. M. Mohorcic, C. Fortuna, A. Vilhar, and J. Horwath, “Evaluation of wavelength requirements for stratospheric optical transport networks,” J. Commun 4, 588–596 (2009).

    Article  Google Scholar 

  11. V. N. Abramochkin, V. V. Belov, Yu. V. Gridnev, A. N. Kudryavtsev, M. V. Tarasenkov, and A. V. Fedosov, “Optoelectronic communication in the atmosphere using diffuse laser radiation: Experiments in the field,” Light & Engineering 25 (4), 41–49 (2017).

    Google Scholar 

  12. V. V. Belov, I. Juwiler, N. Blaunstein, M. V. Tarasenkov, and E. S. Poznakharev, “NLOS communication: Theory and experiments in the atmosphere and underwater,” Atmosphere 11, 1122 (2020). https://doi.org/10.3390/atmos11101122

    Article  ADS  Google Scholar 

  13. V. V. Belov and M. V. Tarasenkov, “Three algorithms of statistical modeling in problems of optical communication on scattered radiation and bistatic sensing,” Atmos. Ocean. Opt. 29 (5), 533–540 (2016).

    Article  Google Scholar 

  14. M. V. Tarasenkov, V. V. Belov, and E. S. Poznakharev, “Estimation of optimal wavelengths for atmospheric non-line-of-sight optical communication in the UV range of the spectrum in daytime and at night for baseline distances from 50 m to 50 km,” J. Opt. Soc. Am. A 39, 177–188 (2022).

    Article  ADS  Google Scholar 

  15. Ding Jupeng, Mei Hongye, I Chih-Lin, Zhang Hui, and Liu Wenwen, “Frontier progress of unmanned aerial vehicles optical wireless technologies,” Sensors 20 (19), 5476 (2020). https://doi.org/10.3390/s20195476

    Article  ADS  Google Scholar 

  16. H. Tadayyoni and M. Uysal, “Ultraviolet communications for ground-to-air links,” in Proc. of the 27th Signal Processing and Communication Application Conference SIU 2019, Sivas, Turkey, April 24–26, 2019 (IEEE, 2019), pp. 1–4. https://doi.org/10.1109/SIU.2019.8806490

  17. D. M. Reilly, Atmospheric optical communications in the middle ultraviolet. Thesis M.S. (Massachusetts Institute of Technology, 1976), pp. 23–31.

  18. S. Voigt, J. Orphal, K. Bogumil, and J. P. Burrows, “The temperature dependence (203–293 K) of the absorption cross-sections of O3 in the 230–850 nm region measured by fourier-transform spectroscopy,” J. Photochem. Photobiol., A 143 (1), 1–9 (2001). https://doi.org/10.1016/S1010-6030(01)00480-4

    Article  Google Scholar 

  19. https://hitran.iao.ru. Cited March 26, 2022.

  20. F. X. Kneizys, D. C. Robertson, L. W. Abreu, P. Acharya, G. P. Anderson, L. S. Rothman, J. H. Chetwynd, J. E. A. Selby, E. P. Shettle, W. O. Gallery, A. Berk, S. A. Clough, and L. S. Bernstein, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Air Force Geophysics Laboratory, USA, 1996).

    Google Scholar 

  21. https://katodnv.com KATOD. Cited March 26, 2022.

  22. H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Select. Areas Commun. 27 (9), 1535–1544 (2009).

    Article  Google Scholar 

  23. N. A. Soboleva and A. E. Melamid, Photoelectronic Devices (Vysshaya shkola, Moscow, 1974) [in Russian].

  24. A. F. Vasil’ev and A. M. Chmutin, Photoelectronic Radiation Receivers (VGU, Voronezh, 2010) [in Russian].

    Google Scholar 

  25. N. O. Chechik, S. M. Fainshtein, and T. M. Lifshits, Electronic Multipliers, Ed. by D.V. Zernova (GITTL, Moscow, 1957) [in Russian].

    Google Scholar 

  26. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  27. Sun Yu and Zhan Yafeng, “Closed-form impulse response model of non-line-of-sight single-scatter propagation,” J. Opt. Soc. Am. A 33, 752–757 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  28. “International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation),” Health Phys. 87, 171–186 (2004).

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 22-22-00830).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Tarasenkov, V. V. Belov or E. S. Poznakharev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenkov, M.V., Belov, V.V. & Poznakharev, E.S. Statistical Simulation of Characteristics of an Optical Communication Channel Based on Scattered Radiation with an Unmanned Aerial Vehicle. Atmos Ocean Opt 35 (Suppl 1), S8–S16 (2022). https://doi.org/10.1134/S1024856023010189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023010189

Keywords:

Navigation