Skip to main content
Log in

Temporal Variability and Relationship between Surface Concentration of PM2.5 and Aerosol Optical Depth According to Measurements in the Middle Urals

  • ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

We analyzed the measurements of aerosol parameters in the surface air layer with sets of Panasonic PM2.5 optical sensors and in throughout the atmospheric column by the photometric method at urban and background observation sites in the Middle Urals for 2016–2019. The features of the intra-annual and daily variations in the aerosol parameters in the surface air layer and in the atmospheric column are compared; also, the relationships between the PM2.5 concentration, AOD, and meteorological parameters in two regions are studied. For the first time for the Middle Urals, we constructed the statistical models for estimating the PM2.5 concentration. Multivariate regression models for estimating the logarithm of PM2.5 concentration are far superior to the single-factor models. The significant predictors are found to be: boundary layer height (blh, m), ln AOD, normalized difference vegetation index (NDVI), relative air humidity (Hu, %), and pressure (P, Pa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Cambridge University Press, Cambridge, United Kingdom; New York, USA) (in press). https://doi.org/10.1017/9781009157896

  2. Pope C. Arden, N. Coleman, Z. A. Pond, and R. T. Burnett, “Fine particulate air pollution and human mortality: 25+ years of cohort studies,” Environ. Res. 183, 108924 (2020). https://doi.org/10.1017/9781009157896

    Article  Google Scholar 

  3. G. Hoek, R. M. Krishnan, R. Beelen, A. Peters, B. Ostro, B. Brunekreef, and J. D. Kaufman, “Long-term air pollution exposure and cardio-respiratory mortality: A review,” Environ. Health 12, 108924 (2013). https://doi.org/10.1017/9781009157896

    Article  Google Scholar 

  4. Y. F. Xing, Y. H. Xu, M. H. Shi, and Y. X. Lian, “The impact of PM2.5 on the human respiratory system,” J. Thorac. Dis. 8 (1), E69–E74 (2016). https://doi.org/10.3978/j.issn.2072-1439.2016.01.19

    Article  Google Scholar 

  5. K. Vohra, A. Vodonos, J. Schwartz, E. A. Marais, M. P. Sulprizio, and L. J. Mickley, “Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS Chem,” Environ. Res. 195, 110754 (2021). https://doi.org/10.1016/j.envres.2021.110754

    Article  Google Scholar 

  6. https://un.org/ru/documents/decl_conv/conventions/ transboundary.shtml/. Cited June 19, 2022.

  7. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide (World Health Organization, 2006).

  8. SanPiN 1.2.3685-21 “Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors for Humans.” I. Maximum Permissible Concentrations (MPC) of Pollutants in Urban and Rural Atmospheric Air.

  9. https://modis-imaes.gsfc.nasa.gov/_docs/MOD04: MYD04_ATBD_C005_rev1.pdf. Cited June 20, 2022.

  10. L. A. Remer, Y. J. Kaufman, D. Tanre, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, B. N. and Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62, 947–973 (2005).

    Article  ADS  Google Scholar 

  11. J. A. Engel-Cox, C. H. Holloman, B. W. Coutant, and R. M. Hoff, “Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality,” Atmos. Environ. 38 (16), 2495–2509 (2004). https://doi.org/10.1016/j.atmosenv.2004.01.039

    Article  ADS  Google Scholar 

  12. J. Wang, “Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies,” Geophys. Rev. Lett. 21 (30) (2003). https://doi.org/10.1029/2003GL018174

  13. Q. Yang, Q. Yuan, L. Yue, T. Li, H. Shen, and L. Zhang, “The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations,” Environ Pollut., 248 (2019). https://doi.org/10.1016/j.envpol.2019.02.071

  14. M. Schaap, A. Apituley, R. M. A. Timmermans, R. B. A. Koelemeijer, and G. de Leeuw, “Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands,” Atmos. Chem. Phys. 9 (3), 909–925 (2009). https://doi.org/10.5194/acp-9-909-2009

    Article  ADS  Google Scholar 

  15. R. Koelemeijer, C. D. Homan, and J. Matthijsen, “Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe,” Atmos. Environ. 40, 5304–5315 (2006). https://doi.org/10.1016/j.atmosenv.2006.04.044

    Article  ADS  Google Scholar 

  16. Y. Liu, J. A. Sarnat, A. Kilaru, D. J. Jacob, and P. Koutrakis, “Estimating ground-level PM2.5 in the Eastern United States using satellite remote sensing,” Environ. Sci. Technol. 39 (9), 3269–3278 (2005). https://doi.org/10.1021/es049352m

    Article  ADS  Google Scholar 

  17. M. Ahmad, K. Alam, S. Tariq, S. Anwar, J. Nasir, and M. Mansha, “Estimating fine particulate concentration using a combined approach of linear regression and artificial neural network,” Atmos. Environ. 219, 117050 (2019). https://doi.org/10.1016/j.atmosenv.2019.117050

    Article  Google Scholar 

  18. P. Gupta and S. A. Christopher, “Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach,” J. Geophys. Res. Atmos, No. 114, 1–13 (2009). https://doi.org/10.1029/2008JD011496

  19. http://climatebase.ru/station/ 23256. Cited July 1, 2022.

  20. https://mprso.midural.ru/article/show/id/1126. Cited June 28, 2022.

  21. D. M. Kabanov, S. M. Sakerin, and S. A. Turchinovich, “Sun photometer for scientific monitoring (instrumentation, techniques, algorithms),” Opt. Atmos. Okeana 14 (12), 1067–1074 (2001).

    Google Scholar 

  22. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakadjima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Env. 66 (1), 1 (1998).

    Article  ADS  Google Scholar 

  23. O. E. Garcia, J. P. Diaz, F. J. Exposito, A. M. Diaz, O. Dubovik, Y. Dermian, P. Dubuisson, and J. C. Roger, “Shortwave radiative forcing and efficiency of key aerosol types using AERONET data,” Atmos. Chem. Phys. 12, 5129–5145 (2012).

    Article  ADS  Google Scholar 

  24. Aerosol Radiative Parameters in the Russian Asia, Ed. by S.M. Sakerin (Publishing House of IAO SB RAS, Tomsk, 2012) [in Russian].

    Google Scholar 

  25. T. Nakayama, Y. Matsumi, K. Kawahito, and Y. Watabe, “Development and evaluation of a palm-sized optical PM2.5 sensor,” Aerosol Sci. Technol. 52 (1), 2–12 (2018). https://doi.org/10.1080/02786826.2017.1375078

    Article  ADS  Google Scholar 

  26. D. P. Gubanova, I. B. Belikov, N. F. Elanskii, A. I. Skorokhod, and N. E. Chubarova, “Variations in PM2.5 surface concentration in Moscow according to observations at MSU Meteorological Observatory,” Atmos. Ocean. Opt. 31 (3), 290–299 (2018).

    Article  Google Scholar 

  27. V. A. Poddubny, A. P. Luzhetskaya, Yu. I. Markelov, and D. M. Kabanov, “Estimate of the urban effect on aerosol turbidity of the atmosphere according to data of two-point “background–industrial city” measurements,” Atmos. Ocean. Opt. 25 (5), 364–371 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank their colleagues M.V. Panchenko, S.M. Sakerin, S.Yu. Gorda, S.A. Beresnev, Yu.I. Markelov, B.N. Holben, A.V. Smirnov, Y. Matsumi, and R. Imasu for assistance in carrying out the measurements.

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 19-05-50 138).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. P. Luzhetskaya, E. S. Nagovitsyna, E. V. Omelkova or V. A. Poddubny.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luzhetskaya, A.P., Nagovitsyna, E.S., Omelkova, E.V. et al. Temporal Variability and Relationship between Surface Concentration of PM2.5 and Aerosol Optical Depth According to Measurements in the Middle Urals. Atmos Ocean Opt 35 (Suppl 1), S133–S142 (2022). https://doi.org/10.1134/S1024856023010098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023010098

Keywords:

Navigation