Skip to main content
Log in

A Study of Trace Atmospheric Gases at the Water–Atmosphere Interface Using Remote and Local IR Laser Gas Analysis: A Review

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Trace atmospheric gases (TAGs) emitted by the Earth’s water surface significantly impact the chemical processes in the atmosphere, weather, and global climate change. In the work, key TAGs emitted from the ocean surface and wetlands are analyzed. The laser absorption spectroscopy techniques for local/remote gas analysis suitable for detection of several TAGs are considered, including cavity ring-down spectroscopy and photoacoustic spectroscopy. Approaches to the development of laser absorption spectroscopy tools for the control of a large number of TAGs using an optical parametric oscillator as a tunable laser source are described, as well as examples of their implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. M. O. Andreae and P. J. Crutzen, “Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry,” Science 276, 1052–1058 (1997).

    Article  Google Scholar 

  2. R. Newhook, M. E. Meek, and D. Caldbick, Concise International Chemical Assessment Document 26: Carbon disulphide. https://apps.who.int/iris/handle/ 10665/42554. Cited June 23, 2022.

  3. H. X. Xie, R. M. Moore, and W. L. Miller, “Photochemical production of carbon disulphide in seawater,” J. Geophys. Res. 103, 5635–5644 (1998).

    Article  ADS  Google Scholar 

  4. N. DeLeon-Rodrigueza, T. L. Lathemb, L. M. Rodriguez-Ra, J. M. Barazeshc, B. E. Andersond, A. J. Beyersdorfd, L. D. Ziembad, M. Berginb, A. Nenesb, and K. T. Konstantinidisa, “Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications,” Proc. Nat. Acad. Sci. U.S.A. 110, 2575–2580 (2013).

    Article  ADS  Google Scholar 

  5. R. Simo and C. Pedros-Alio, “Role of vertical mixing in controlling the oceanic production of dimethyl sulphide,” Nature 402, 396–399 (1999).

    Article  ADS  Google Scholar 

  6. S. A. Montzka, M. Aydin, M. Battle, J. H. Butler, E. S. Saltzman, B. D. Hall, A. D. Clarke, D. Mondeel, and J. W. Elkins, “A 350-year atmospheric history for carbonyl sulfide inferred from Antarctic firn air and air trapped in ice,” J. Geophys. Res. 109 (D22302) (2004).

  7. S. F. Watts, “The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide,” Atmos. Environ. 34 (5), 761–779 (2000).

    Article  ADS  Google Scholar 

  8. P. S. Liss, C. A. Marandino, E. E. Dahl, D. Helmig, E. J. Hintsa, C. Hughes, M. T. Johnson, R. M. Moore, J. M. C. Plane, B. Quack, H. B. Singh, J. Stefels, R. von Glasow, and J. Williams, “Short-lived trace gases in the surface ocean and the atmosphere,” in Ocean—Atmosphere Interactions of Gases and Particles (Springer, 2014). https://doi.org/10.1007/978-3-642-25643-1_1

    Book  Google Scholar 

  9. The HITRAN Database. URL: https://hitran.org/. Cited June 1, 2022.

  10. E. Wada and A. Hattori, Nitrogen in the Sea: Forms, Abundance, and Rate Processes (CRC Press, Boca Raton, FL, 1991).

    Google Scholar 

  11. R. J. Salawitch, “Atmospheric chemistry—biogenic bromine,” Nature 439, 275–277 (2006).

    Article  ADS  Google Scholar 

  12. M. Yang, B. J. Huebert, B. W. Blomquist, S. G. Howell, L. M. Shank, C. S. McNaughton, A. D. Clarke, L. N. Hawkins, L. M. Russell, D. S. Covert, D. J. Coffman, T. S. Bates, P. K. Quinn, N. Zagorac, A. R. Bandy, S. P. de Szoeke, P. D. Zuidema, S. C. Tucker, W. A. Brewer, X. Yang, R. A. Cox, N. J. Warwick, J. A. Pyle, G. D. Carver, F. M. O’Connor, and N. H. Savage, “Tropospheric bromine chemistry and its impacts on ozone: A model study,” J. Geophys. Res.: Atmos. 110, D23311 (2005).

    Article  ADS  Google Scholar 

  13. L. J. Carpenter and P. D. Nightingale, “Chemistry and release of gases from the surface ocean,” Chem. Rev. 115 (10), 4015–4034 (2015).

    Article  Google Scholar 

  14. G. A. Novak and T. H. Bertram, “Reactive VOC production from photochemical and heterogeneous reactions occurring at the air–ocean interface,” Acc. Chem. Res. 53, 1014–1023 (2020).

    Article  Google Scholar 

  15. M. Bruggemann, N. Hayeck, and C. George, “Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols,” Nature Commun. 9 (2018).

  16. R. Beale, P. S. Liss, and P. D. Nightingale, “First oceanic measurements of ethanol and propanol,” Geophys. Rev. Lett. 37 (2010).

  17. J. L. Dixon, R. Beale, and P. D. Nightingale, “Microbial methanol uptake in the northeast Atlantic waters,” ISME J. 5, 704–716 (2011).

    Article  Google Scholar 

  18. J. L. Dixon, R. Beale, and P. D. Nightingale, “Rapid biological oxidation of methanol in the tropical Atlantic: Significance as a microbial carbon source,” Biogeosciences 8, 2707–2716 (2011).

    Article  ADS  Google Scholar 

  19. C. A. Marandino, W. J. de Bruyn, S. D. Miller, M. J. Prather, and E. S. Saltzman, “Oceanic uptake and the global atmospheric acetone budget,” Geophys. Rev. Lett. 32 (2005).

  20. M. Mezcua, A. Aguera, M. D. Hernando, L. Piedra, and A. R. Fernandez-Alba, “Determination of methyl tert.-butyl ether and ter.-butyl alcohol in seawater samples using purge-and-trap enrichment coupled to gas chromatography with atomic emission and mass spectrometric detection,” J. Chromatogr. A 999, 81–90 (2003).

    Article  Google Scholar 

  21. K. A. Read, L. J. Carpenter, S. R. Arnold, R. Beale, P. D. Nightingale, J. R. Hopkins, A. C. Lewis, J. D. Lee, L. Mendes, and S. J. Pickering, “Multiannual observations of acetone, methanol, and acetaldehyde in remote tropical atlantic air: Implications for atmospheric OVOC budgets and oxidative capacity,” Environ. Sci. Technol. 46, 11 028–11 039 (2012).

    Article  Google Scholar 

  22. C. L. Heald, A. H. Goldstein, J. D. Allan, A. C. Aiken, E. Apel, E. L. Atlas, A. K. Baker, T. S. Bates, A. J. Beyersdorf, D. R. Blake, T. Campos, H. Coe, J. D. Crounse, P. F. DeCarlo, J. A. de Gouw, E. J. Dunlea, F. M. Flocke, A. Fried, P. Goldan, R. J. Griffin, S. C. Herndon, J. S. Holloway, R. Holzinger, J. L. Jimenez, W. Junkermann, W. C. Kuster, A. C. Lewis, S. Meinardi, D. B. Millet, T. Onasch, A. Polidori, P. K. Quinn, D. D. Riemer, J. M. Roberts, D. Salcedo, B. Sive, A. L. Swanson, R. Talbot, C. Warneke, R. J. Weber, P. Weibring, P. O. Wennberg, D. R. Worsnop, A. E. Wittig, R. Zhang, J. Zheng, and W. Zheng, “Total Observed Organic Carbon (TOOC) in the atmosphere: A synthesis of North American observations,” Atmos. Chem. Phys. 8, 2007–2025 (2008).

    Article  ADS  Google Scholar 

  23. H. B. Singh, L. J. Salas, R. B. Chatfield, E. Czech, A. Fried, J. Walega, M. J. Evans, B. D. Field, D. J. Jacob, D. Blake, B. Heikes, R. Talbot, G. Sachse, J. H. Crawford, M. A. Avery, S. Sandholm, and H. Fuelberg, “Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P,” J. Geophys. Res.: Atmos. 109, 07 (2004).

  24. R. Beale, J. L. Dixon, S. R. Arnold, P. S. Liss, and P. D. Nightingale, “Methanol, acetaldehyde and acetone in the surface waters of the Atlantic Ocean,” J. Geophys. Res.: Oceans 118, 5412–5425 (2013).

    Article  ADS  Google Scholar 

  25. M. Yang, R. Beale, P. Liss, M. Johnson, B. Blomquist, and P. Nightingale, “Air–sea fluxes of oxygenated volatile organic compounds across the Atlantic Ocean,” Atmos. Chem. Phys. 14, 7499–7517 (2014).

    Article  ADS  Google Scholar 

  26. N. M. Donahue and R. G. Prinn, “Non-methane hydrocarbon chemistry in the remote marine boundary layer,” J. Geophys. Res. 95, 18387–18411 (1993).

    Article  ADS  Google Scholar 

  27. M. Li, X. Huang, L. Jianfeng, and Y. Song, “Estimation of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem in China using real-time remote sensing data,” Atmos. Chem. Phys. 12 (3), 6551–6592 (2012).

    Google Scholar 

  28. D. F. Wilson, J. Swinnerton, and R. Lamontagne, “Production of carbon monoxide and gasesous hydrocarbons in seawater—relation to dissolved organic carbon,” Science 168, 1576–1577 (1970).

    Article  ADS  Google Scholar 

  29. E. L. Atlas, B. A. Ridley, G. Hubler, J. G. Walega, M. A. Carroll, D. D. Montzka, B. J. Huebert, R. B. Norton, F. E. Grahek, and S. Schauffler, “Partitioning and budget of NOy species during the Mauna Loa Observatory photochemistry experiment,” J. Geophys. Res. 97, 10 449–10 462 (1992).

    Article  ADS  Google Scholar 

  30. E. Atlas, W. Pollock, J. Greenberg, L. Heidt, and A. M. Thompson, “Alkyl nitrates, nonmethane hydrocarbons and halocarbon gases over the equatorial Pacific Ocean during Saga-3,” J. Geophys. Res.: Atmos. 98, 16933–16947.

  31. A. J. Beyersdorf, D. R. Blake, A. Swanson, S. Meinardi, F. S. Rowland, and S. Davis, “Abundances and variability of tropospheric volatile organic compounds at the south pole and other Antarctic locations,” Atmos. Environ. 44, 4565–4574 (2010).

    Article  ADS  Google Scholar 

  32. H. W. Bange, “Gaseous nitrogen compounds (NO, N2O, N2, NH3) in the ocean,” in Nitrogen in the Marine Environment (Academic Press, 2008), ch. 2, pp. 51–94.

  33. P. K. Quinn, W. E. Asher, and R. J. Charlson, “Equilibria of the marine multiphase ammonia system,” J. Atmos. Chem. 14, 11–30 (1992).

    Article  Google Scholar 

  34. D. L. Savoie, J. M. Prospero, R. J. Larsen, F. Huang, M. A. Izaguirre, T. Huang, T. H. Snowdon, L. Custals, and C. G. Sanderson, “Nitrogen and sulfur species in Antarctic aerosols at Mawson, Palmer Station, and Marsh (King George Island),” J. Atmos. Chem. 17, 95 (1992).

    Article  Google Scholar 

  35. M. T. Johnson and T. G. Bell, “Coupling between dimethylsupfide emissions and the ocean–atmosphere exchange of ammonia,” Environ. Chem. 5, 259–267 (2008).

    Article  Google Scholar 

  36. T. S. Ul’baev, T. S. Luk’yanova, and G. N. Mansurov, “Marsh gases as one of the natural reasons of selfignition in boggy areas,” Vestn. MGOU 2, 161–171 (2012).

    Google Scholar 

  37. A. Z. Mindubaev, D. E. Belostotskii, S. T. Minzanova, V. F. Mironov, F. K. Alimova, L. G. Mironova, and A. I. Konovalov, “Methanogenesis: Biochemistry, technology, and application,” Uchen. Zap. Kazan. Univ. 152 (2), 178–191 (2010).

    Google Scholar 

  38. I. N. Lykov, S. A. Safronova, M. I. Morozenko, and G. V. Efremov, “Methanogenesis and global climate processes,” Priroda (Moscow, Russ. Fed.) 8, 40–44 (2009).

  39. L. Lietti, G. Groppi, and C. Ramella, “NH3 oxidation during the catalytic combustion of bio-masses-related fuels over Mn-substituted hexaaluminates,” Catal. Lett. 53 (1-2), 91–95 (1998).

    Article  Google Scholar 

  40. S. Bari, “Effect of carbon dioxide on the performance of biogas/diesel duel-fuel engine,” Renewable Energy 9 (1-4), 1045–1048 (1996).

    Article  Google Scholar 

  41. K. L. Kovacs, Cs. Bagyinka, L. Bodrossy, R. Csaki, B. Fodor, K. Gyorfi, T. Hanczar, M. Kalman, J. Osz, K. Perei, B. Polyak, G. Rakhely, M. Takacs, A. Toth, and J. Tusz, “Recent advances in biohydrogen research,” Pflugers Arch. Eur. J. Physiol. 439 (7), 81–83 (2000).

    Article  Google Scholar 

  42. J. M. Hunt, Petroleum Geochemistry and Geology, 2nd ed. (Freeman and Co, New York, 1996).

    Google Scholar 

  43. A. V. Milkov and E. Giuseppe, “Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples,” Organic Geochem. 125, 109–120 (2018).

    Article  Google Scholar 

  44. M. J. Whiticar, “Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane,” Chem. Geology 161, 291–314 (1999).

    Article  ADS  Google Scholar 

  45. M. I. Neishtadt, “World natural phenomenon—swampiness of the Western Siberian Plain,” Izv. Akad. Nauk SSSR, Ser. Geogr., No. 1, 21–34 (1971).

  46. T. V. Glukhova, S. E. Vomperskii, and A. G. Kovalev, “Emission of SO2 from oligotrophic swamps of the south taiga zone of European Russia with accounting for surface microrelief,” Pochvovedenie, No. 1, 48–57 (2014).

    Google Scholar 

  47. M. V. Glagolev, M. V. Chistotin, N. A. Shnyrev, and A. A. Sirin, “Summer-autumn emission of carbon and methane from drained peatlands modified during economic use and natural swamps (the case of a site in the Tomsk region),” Agrokhimiya, No. 5, 46–58 (2008).

    Google Scholar 

  48. E. A. Golovatskaya and E. A. Dyukarev, “The influence of environmental factors on the CO2 emission from the surface of oligotrophic peat soils in West Siberia,” Eurasian Soil Sci. 45 (6), 588–597 (2012).

    Article  ADS  Google Scholar 

  49. T. V. Glukhova, D. V. Ilyasov, S. E. Vompersky, A. V. Golovchenko, N. A. Manucharova, and A. L. Stepanov, “Soil respiration in alder swamp (Alnus Glutinosa) in southern taiga of European Russia depending on microrelief,” Forests 12, 496 (2021).

    Article  Google Scholar 

  50. C. Helfter, M. Gondwe, M. Murray-Hudson, A. Makati, and U. Skiba, “From sink to source: High inter-annual variability in the carbon budget of a Southern African wetland,” Phil. Trans. R. Soc. A 380, 20210148 (2021).

    Article  ADS  Google Scholar 

  51. M. V. Glagolev, “Annotated reference list of CH4 and CO2 flux measurements from Russia mires,” Dinamika Okruzhayushchei Sredy Global. Izmeneniya. Klim. 1 (2), 5–57 (2010).

    Google Scholar 

  52. T. Friborg, H. Soegaard, T. R. Christensen, C. R. Lloyd, and N. S. Panikov, “Siberian wetlands: Where a sink is a source,” Geophys. Rev. Lett. 30 (21), 2129 (2003).

    Article  ADS  Google Scholar 

  53. V. S. Kazantsev, Extended Abstract of Candidate’s Dissertation in Biology (2013).

  54. M. N. Miglovets, Extended Abstract of Candidate’s Dissertation in Biology (2014).

  55. A. Raturi, H. Singh, P. Kumar, A. Chanda, and N. Shukla, “Characterizing the post-monsoon CO2, CH4, N2O, and H2O vapor fluxes from a tropical wetland in the Himalayan Foothill,” Environ. Monit. Assess. 194, 50 (2022).

    Article  Google Scholar 

  56. K. Hergoualc’h, N. Dezzeo, L. V. Verchot, C. Martius, J. van Lent, Pasquel J. del Agulia, and M. Lopez Gonzales, “Spatial and temporal variability of soil N2O and CH4 fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon,” Glob. Change Biol. 26, 7198–7216 (2020).

    Article  ADS  Google Scholar 

  57. G. L. Vourlitis and W. C. Oechel, “The role of northern ecosystems in the global methane budget,” Ecol. Studies 124, 266–289 (1996).

    Article  Google Scholar 

  58. J. O. Kaplan, G. Folberth, and D. A. Hauglustaine, “Role of methane and biogenic volatile organic compound sources in late glacial and holocene fluctuations of atmospheric methane concentrations,” Global Biogeochem. Cycl. 20 (2) (2006).

  59. M. J. Carmichael, E. S. Bernhardt, S. L. Brauer, and W. K. Smith, “The role of vegetation in methane flux to the atmosphere: Should vegetation be included as a distinct category in the global methane budget?,” Biogeochemistry 119, 1–24 (2014).

    Article  Google Scholar 

  60. M. R. Turetsky, A. Kotowska, J. Bubier, N. B. Dise, P. Crill, E. R. C. Hornibrook, K. Minkkinen, T. R. Moore, I. H. Myers-Smith, H. Nykanen, D. Olefeldt, J. Rinne, S. Saarnio, N. Shurpali, E. Tuittila, J. M. Waddington, J. R. White, K. P. Wickland, and M. Wilmking, “A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands,” Glob. Chang. Biol. 20 (7), 2183–2197 (2014).

    Article  ADS  Google Scholar 

  61. H. Akhtar, M. Lupascu, R. S. Sukri, T. E. L. Smith, A. R. Cobb, and S. Swarup, “Significant sedge-mediated methane emissions from degraded tropical peatlands,” Environ. Res. Lett. 16, 014002 (2021).

    ADS  Google Scholar 

  62. T. Bao, G. Jia, and X. Xu, “Wetland heterogeneity determines methane emissions: A Pan-Arctic synthesis,” Environ. Sci. Technol. 55, 10  152–10  163 (2021).

    Article  Google Scholar 

  63. N. D. Ward, T. S. Bianchi, J. B. Martin, C. J. Quintero, H. O. Sawakuchi, and M. J. Cohen, “Pathways for methane emissions and oxidation that influence the net carbon balance of a subtropical cypress swamp,” Front. Earth Sci. 8 (2020).

  64. R. Rinnan, A. Rinnan, T. Holopainen, J. K. Holopainen, and P. Pasanen, “Emission of non-methane volatile organic compounds (VOCs) from boreal peatland microcosms-effects of ozone exposure,” Atmos. Environ. 39, 921–930 (2005).

    Article  ADS  Google Scholar 

  65. www.optec.ru/produktsiya.html?c_dept_id=16. Cited June 1, 2022.

  66. http://www.lgrinc.com/advantages/unique-technology. php. Cited June 1, 2022.

  67. K. K. Chow, M. Short, and H. Zeng, “A comparison of spectroscopic techniques for human breath analysis,” Biomed. Spectrosc. Imag. 1, 339–353 (2012).

    Article  Google Scholar 

  68. J. A. de Gouw, S. Te Lintel Hekkert, J. Mellqvist, C. Warneke, E. L. Atlas, F. C. Fehsenfeld, A. Fried, G. J. Frost, F. J. M. Harren, J. S. Holloway, B. Lefer, R. Lueb, J. F. Meagher, D. D. Parrish, M. Patel, L. Pope, D. Richter, C. Rivera, T. B. Ryerson, J. Samuelsson, J. Walega, R. A. Washenfelder, P. Weibring, and X. Zhu, “Airborne measurements of ethene from industrial sources using laser photo-acoustic spectroscopy,” Environ. Sci. Technol. 43 (7), 2437–2442 (2009).

    Article  ADS  Google Scholar 

  69. F. G. C. Bijnen, J. Reuss, and F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum. 67, 2914 (1996).

    Article  ADS  Google Scholar 

  70. M. L. Belov, V. A. Gorodnichev, Yu. V. Fedotov, and V. I. Kozintsev, Photoacoustic Laser Analysis of Multicomponent Gas Mixtures (Bauman Moscow State Technical University, Moscow, 2003) [in Russian].

    Google Scholar 

  71. A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis,” Rev. Sci. Instrum. 72 (4), 1937–1955 (2001).

    Article  ADS  Google Scholar 

  72. V. Zeninari, R. Vallon, C. Risser, and B. Parvitte, “Photoacoustic detection of methane in large concentrations with a Helmholtz sensor: Simulation and experimentation,” Int. J. Thermophys. 37 (1), 1–11 (2016).

    Article  ADS  Google Scholar 

  73. A. A. Karapuzikov, I. V. Sherstov, A. I. Karapuzikov, M. Y. Shtyrov, N. Y. Dukhovnikova, K. G. Zenov, A. A. Boyko, M. K. Starikova, I. I. Tikhonyuk, I. B. Miroshnichenko, M. B. Miroshnichenko, D. B. Kolker, Y. B. Myakishev, V. N. Lokonov, Y. V. Kistenev, and D. A. Kuzmin, “LaserBreeze gas analyzer for noninvasive diagnostics of air exhaled by patients,” Phys. Wave Phenom. 22 (3), 189–196 (2014).

    Article  ADS  Google Scholar 

  74. R. Santagata, D. Tran, B. Argence, O. Lopez, S. Tokunaga, F. Wiotte, H. Mouhamad, A. Goncharov, M. Abgrall, Y. Le Coq, H. Alvarez-Martinez, R. Le Targat, W. Lee, D. Xu, P.-E. Pottie, B. Darquie, and A. Amy-Klein, “High-precision methanol spectroscopy with a widely tunable SI-traceable frequency-comb-based mid-infrared QCL,” Optica 6 (4), 411–423 (2019).

    Article  ADS  Google Scholar 

  75. X. Jinbao, Zh. Feng, A. Kolomenskii, J. Bounds, S. Zhang, M. Amani, L. J. Fernyhough, and H. Schuessler, “Sensitive acetone detection with a mid-IR interband cascade laser and wavelength modulation spectroscopy,” OSA Continuum 2 (3), 640–654 (2019).

    Article  Google Scholar 

  76. Xi Zhenhai, Zheng Kaiyuan, Zheng Chuantao, Zhang Haipeng, Song Fang, Li Chunguang, Ye Weilin, Zhang Yu, Wang Yiding, and K. Frank, “Near-infrared dual-gas sensor system for methane and ethane detection using a compact multipass cell,” Front. Phys. (2022). https://doi.org/10.3389/fphy.2022.843171

  77. B. Lohden, S. Kuznetsova, K. Sengstock, V. M. Baev, A. Goldman, S. Cheskis, and B. Palsdottir, “Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments,” Appl. Phys. B 102, 331–344 (2011).

    Article  ADS  Google Scholar 

  78. Y. Sun, Q. Liu, S. Zha, X. Qiu, H.-R. Chang, S. Feng, G. Guo, X. He, and Q. He, “Sub-ppb nitrogen dioxide detection based on resonant photoacoustic spectroscopy,” Microw. Opt. Technol. Lett. 63, 2058–2062 (2021).

    Article  Google Scholar 

  79. Zheng-Yue Xue, Jun Li, Xiao-Hai Liu, Jing-Jing Wang, Xiao-Ming Gao, and Tu Tan, “Measurement and profile inversion of atmospheric N2O absorption spectrum based on laser heterodyne detection,” Acta Phys. Sin. 70 (21), 217801 (2021).

    Article  Google Scholar 

  80. Li Jinyi, Yang Sen, Wang Ruixue, Du Zhenhui, and Wei Yingying, “Ammonia detection using hollow waveguide enhanced laser absorption spectroscopy based on a 9.56 μm quantum cascade laser,” AOPC 2017: Opt. Spectrosc. Imag. 2017. https://doi.org/10.1117/12.2285338

  81. Liu Qiuwu, Chen Yafeng, Wang Jie, Huang Jian, and Hu Shunxing, “Measurement of atmospheric NO2 profile using three-wavelength dual-differential absorption lidar,” Proc. SPIE—Int. Soc. Opt. Eng. 10605 (2017).

  82. A. Liang, G. Han, X. Ma, C. Xiang, Y. Zheng, T. Zhang, H. Xu, and W. Gong, “Development of differential absorption lidar system at 1.57 μm for sensing carbon dioxide in China,” in Proc. of International Geoscience Remote Sensing Symposium (2017), pp. 5268–5271.

  83. J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectr. Rev. 46, 440–471 (2011).

    Article  ADS  Google Scholar 

  84. K. I. Vodopyanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, “AgGaS2 optical parametric oscillator continuously tunable from 3.9 to 11.3 μm,” Appl. Phys. Lett. 75, 1204 (1999).

    Article  ADS  Google Scholar 

  85. A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photon. Rev. 7 (6), L89–L92 (2013).

    Article  ADS  Google Scholar 

  86. N. Kostyukova, A. Boyko, V. Badikov, D. Badikov, G. Shevyrdyaeva, V. Panyutin, G. Marchev, D. Kolker, and V. Petrov, " Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm," Opt. Lett. 41, 035039 (2016).

    Article  Google Scholar 

  87. D. Chuchumishev, A. Trifonov, B. Oreshkov, X. Xu, and I. Buchvarov, “High-energy picosecond kHz optical parametric oscillator/amplifier tunable between 3 and 3.5 μm,” Appl. Phys. B 124 (7) (2017).

  88. H. Huang, S. Wang, X. Liu, and D. Shen, “Simultaneous dual-wavelength nanosecond mid-infrared optical parametric oscillator,” Infrared Phys. Technol. 93, 91–95 (2018).

    Article  ADS  Google Scholar 

  89. G. G. Matvienko, O. A. Romanovskii, S. A. Sadovnikov, A. Ya. Sukhanov, O. V. Kharchenko, and S. V. Yakovlev, “Study of the possibility of using a parametric-light-generator-based laser system for lidar probing of the composition of the atmosphere,” J. Opt. Technol. 84 (6), 408–417 (2017).

    Article  Google Scholar 

  90. O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Broadband IR lidar for gas analysis of the atmosphere,” Appl. Spectrosc. 85 (3), 457 (2018).

    Article  ADS  Google Scholar 

  91. B. Cole, L. Goldberg, S. Chinn, L. A. Pomeranz, K. T. Zawilski, P. G. Schunemann, and J. McCarthy, “Compact and efficiency mid-IR OPO source pumped by a passively Q-switched Tm:YAP laser,” Opt. Lett. 43, 1099–1102 (2018).

    Article  ADS  Google Scholar 

  92. D. B. Kolker, R. V. Pustovalova, M. K. Starikova, A. I. Karapuzikov, A. A. Karapuzikov, O. M. Kuznetsov, and Yu. V. Kistenev, “A nanosecond optical parametric oscillator in the mid-IR region with double-pass pump,” Instrum. Experim. Tech. 55 (2), 263–267 (2012).

    Article  Google Scholar 

  93. K. Devi, A. Padhye, P. G. Schunemann, and M. Ebrahim-Zadeh, “Multimilliwatt, tunable, continuous-wave, mid-infrared generation across 4.6-4.7 μm based on orientation-patterned gallium phosphide,” Opt. Lett. 43, 2284 (2018).

    Article  ADS  Google Scholar 

  94. Q. Fu, L. Xu, S. Liang, D. P. Shepherd, D. J. Richardson, and S. Alam, “Widely tunable, narrow-linewidth, high-peak-power, picosecond midinfrared optical parametric amplifier,” IEEE J. Sel. Top. Quant. Electron. 24, 5100706 (2018).

    Article  Google Scholar 

  95. A. A. Boyko, P. G. Schunemann, S. Guha, N. Y. Kostyukova, D. B. Kolker, V. L. Panyutin, G. M. Marchev, V. Pasiskevicius, A. Zukauskas, F. Mayorov, and V. Petrov, “Optical parametric oscillator pumped at ~1 μm with intracavity mid-IR difference-frequency generation in OPGaAs,” Opt. Mater. Express 8, 549 (2018).

    Article  ADS  Google Scholar 

  96. F. Ganikhanov, T. Caughey, and K. L. Vodopyanov, “Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator,” J. Opt. Soc. Am. B 18 (6), 818–822 (2001).

    Article  ADS  Google Scholar 

  97. P. Schlup, G. W. Baxter, and I. T. McKinnie, “Single-mode near- and mid-infrared periodically poled lithium niobate optical parametric oscillator,” Opt. Commun. 176, 267–271 (2000).

    Article  ADS  Google Scholar 

  98. Li. Wang, A. A. Boyko, A. Schirrmacher, E. Buttner, W. Chen, N. Ye, and V. Petrov, “Narrow-band periodically poled lithium niobate nonresonant optical parametric oscillator,” Opt. Lett. 44 (23), 5659–5662 (2019).

    Article  ADS  Google Scholar 

  99. E. Erushin, B. Nyushkov, A. Ivanenko, I. Korel, A. Boyko, N. Kostyukova, and D. Kolker, “Spectral narrowing and wavelength tuning in injection-seeded pulsed optical parametric oscillator for photoacoustic methane analyzer,” CLEO/Europe-EQEC, 172135 (2021). https://doi.org/10.1109/CLEO/Europe-EQEC52157.2021.9542063

  100. Yu. V. Kistenev, V. E. Skiba, V. V. Prischepa, D. A. Vrazhnov, and A. V. Borisov, “Super-resolution reconstruction of noisy gas-mixture absorption spectra using deep learning,” J. Quant. Spectrosc. Radiat. Transfer (2022). https://doi.org/10.1016/j.jqsrt.2022.108278

  101. Z. Bozoki, A. Pogany, and G. Szabo, “Photoacoustic instruments for practical applications: Present, potentials, and future challenges,” Appl. Spec. Rev. 46, 1–37 (2011).

    Article  ADS  Google Scholar 

  102. A. A. Boyko, K. G. Zenov, M. K. Starikova, D. B. Kolker, A. A. Karapuzikov, Y. V. Kistenev, and D. A. Kuzmin, “Twin HgGa2S4 optical parametric oscillator at 4.3-10.78 μm for biomedical applications,” Proc. SPIE—Int. Soc. Opt. Eng. 9448, 944806 (2014).

  103. D. B. Kolker, R. V. Pustovalova, M. K. Starikova, A. I. Karapuzikov, A. A. Karapuzikov, O. M. Kuznetsov, and Yu. V. Kistenev, “Optical parametric oscillator within 2.4–4.3 μm pumped with a nanosecond ND:YAG laser,” Atmos. Ocean. Opt. 25 (1), 77–81 (2012).

    Article  Google Scholar 

  104. V. A. Gorodnichev, Doctoral Dissertation in Technical Science (Bauman Moscow State Technical University, Moscow, 2009).

  105. V. Mitev, S. Babichenko, R. Borelli, L. Fiorani, I. Grigorov, M. Nuvoli, M. Palucci, A. Pistilli, Ad. Puiu, O. Rebane, and S. Santoro, “Mid-IR DIAL for high-resolution mapping of explosive precursors,” Proc. SPIE—Int. Soc. Opt. Eng. 8894, 88940 (2013).

  106. O. A. Romanovskii, S. A. Sadovnikov, S. V. Yakovlev, D. A. Tuzhilkin, O. V. Kharchenko, and N. S. Kravtsova, “Mobile 3.4-μm differential absorption lidar system for remote sensing of the atmospheric methane,” Proc. SPIE—Int. Soc. Opt. Eng. 119162021, 119161 (2021).

  107. S. Yakovlev, S. Sadovnikov, O. Kharchenko, and N. Kravtsova, “Remote sensing of atmospheric methane with IR OPO lidar system,” Atmosphere 11 (1), 70 (2020).

    Article  ADS  Google Scholar 

  108. N. S. Prasad and A. R. Geiger, “Remote sensing of propane and methane by means of a differential absorption lidar by topographic reflection,” Opt. Eng. 35 (4), 1105–1111 (1996).

    Article  ADS  Google Scholar 

  109. A. V. Borisov, A. G. Syrkina, D. A. Kuz’min, V. V. Ryabov, A. A. Boyko, O. Zaharova, V. S. Zasedatel’, and Y. V. Kistenev, “Application of machine learning and laser optical-acousticspectroscopy to study the profile of exhaled air volatile markers of acute myocardial infarction,” J. Breath Res. 15 (2), 027104 (2021).

    Article  Google Scholar 

  110. I. V. Sherstov and D. B. Kolker, “Photoacoustic methane gas analyser based on a 3.3-μm optical parametric oscillator,” Quantum Electron. 50 (11), 1063 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (the project SACHA, agreement no. 075-15-2021-1412 of December 23, 2021, unique agreement identifier RF–2251.62321X0012) within the bilateral French-Russian “Kolmogorov” (PHC) cooperation program (2021-2251-PP408) for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Kistenev, A. Cuisset, O. A. Romanovskii or A. V. Zherdeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kistenev, Y.V., Cuisset, A., Romanovskii, O.A. et al. A Study of Trace Atmospheric Gases at the Water–Atmosphere Interface Using Remote and Local IR Laser Gas Analysis: A Review. Atmos Ocean Opt 35 (Suppl 1), S17–S29 (2022). https://doi.org/10.1134/S1024856023010074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023010074

Keywords:

Navigation