Abstract
We analyzed multiyear (2007–2021) complex experimental studies of microphysical parameters, mass concentration, and elemental composition of aerosol particles in the near-surface atmospheric layer of semiarid zones in the south of European Russia. Background values of the daily average mass concentration of near-surface aerosols in desertified areas of Kalmykia and the dry-steppe zone of Rostov oblast for the hot summer period are found to be 125 and 34 μg/m3, respectively. The particle size distribution functions specific for atmospheric aerosols of the south of European Russia, are determined. An interrelation is found between the particle emission from the surface to the atmosphere and the main atmospheric processes. Long-term variations in elemental composition of near-surface aerosol are studied. Minor variations are identified in the mass concentrations of Cd, Hg, and Cu in the composition of aerosol particles in Rostov oblast. The elemental composition of Kalmykia aerosols stronger varies in terms of the contents of both natural and technogenic elements, mainly of chemical elements of salt balance and heavy metals. It is shown that most elements are weakly accumulated in aerosols, and their differentiation is heavier dependent on the mosaic character of the underlying surface. The multiyear period under study is characterized by the tendency of removing the harmful admixtures from the atmosphere of desertified territories in the south of European Russia due to reducing the climate aridization and mitigating the anthropogenic effect.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.REFERENCES
United Nations Framework Convention on Climate Change. https://unfccc.int/event/cop-26#eq-32. Cited February 21, 2022.
T. M. Kuderina, “Atmospheric aerosol as an indicator of desertification in arid and subarid landscapes of the European Russia,” in Proc. of the VII Intern. Symp. “Steppes of Northern Eurasia” (IS UrB RAS; Dimur, Orenburg, 2015), p. 442–443 [in Russian].
J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 2006).
K. Ya, Kondrat’ev, L. S. Ivlev, and V. F. Krapivin, Atmospheric Aerosols: Properties, Generation Processes, and Effects. From Nano- to Global Scales (VVM, St. Petersburg, 2007 [in Russian].
O. E. Semenov, Introduction to Experimental Meteorology and Climatology of Sandstorms (Almaty, 2011) [in Russian].
Yu. V. Zhulanov, V. A. Zagainov, A. A. Lushnikov, Yu. S. Lyubovtseva, I. A. Nevskii, and L. D. Stulov, “Fine an submicron aerosol of an arid zone,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 22 (5), 488-495 (1986).
Soviet-American Experiment on the Study of Arid Aerosol, Ed. by G.S. Golitsyn(NPO “Taifun”, St. Petersburg, 1992) [in Russian].
S. F. Abdullaev, B. I. Nazarov, A. Kh. Shukurov, and A. M. Zhuraev, “Microphysical properties of dust aerosol in an arid zone,” Dokl. Akad. Nauk Respubliki Tadzhikistan 38 (7-8), 5–9 (1995).
S. F. Abdullaev, B. I. Nazarov, A. Kh. Shukurov, and A. M. Zhuraev, “Variability of air transparency under the effect of carryover of dust aerosol in high-mountain arid zone of Tadzhikistan,” Dokl. Akad. Nauk Respubliki Tadzhikistan 38 (7-8), 9–14 (1995).
B. I. Nazarov, V. A. Maslov, and S. F. Abdullaev, “Optical and microphysical parameters of arid dust aerosol,” Izv., Atmos. Ocean. Phys. 46 (4), 468–474 (2010).
B. I. Nazarov, S. F. Abdullaev, and V. A. Maslov, “Studies of temperature effects of dust storms,” Izv., Atmos. Ocean. Phys. 46 (4), 475–481 (2010).
G. I. Gorchakov, P. O. Shishkov, V. M. Kopeikin, A. S. Emilenko, A. A. Iskakov, P. V. Zakharova, V. N. Sidorov, and K. A. Shukurov, “Lidar nephelometric sounding of arid aerosol,” Atmos. Ocean. Opt. 11 (10), 958–962 (1998).
G. I. Gorchakov, B. M. Koprov, and K. A. Shukurov, “Arid submicron aerosol transport by vortices,” Izv., Atmos. Ocean. Phys. 39 (5), 536–547 (2003).
D. P. Gubanova, O. G. Chkhetiani, T. M. Kuderina, M. A. Iordanskii, Yu. I. Obvintsev, and M. S. Artamonova, “Experimental studies of aerosols in the atmosphere of semiarid landscapes of Kalmykia. 1. Microphysical parameters and mass concentration of aerosol particles” Geofiz. Protsessy Biosfera, No. 1, 5–29 (2018).
E. A. Malinovskaya, O. G. Chkhetiani, I. N. Panchishkina, G. G. Petrova, and A. I. Petrov, “The relationship between the surface electric field and arid aerosol under different wind conditions,” Dokl. RAN. Nauki Zemle 502 (2), 115–124 (2022).
E. A. Malinovskaya, O. G. Chkhetiani, and L. O. Maksimenkov, “Influence of wind direction on the size distribution of aeolian microparticles,” Izv. RAN. Fiz. Atmos. Okeana 57 (5), 539–554 (2021).
G. I. Gorchakov, D. V. Buntov, A. V. Karpov, V. M. Kopeikin, S. F. Mirsaitov, R. A. Gushchin, and O. I. Datsenko, “The saltating particle aleurite mode in wind–sand flux over a desertified area,” Dokl. Earth Sci. 488 (1), 1103–1106 (2019).
G. I. Gorchakov, D. V. Buntov, A. V. Karpov, V. M. Kopeikin, S. F. Mirsaitov, R. A. Gushchin, and O. I. Datsenko, “Wind effect on the size distribution of saltating particles,” Atmos. Ocean. Opt. 33 (2), 198–205 (2020).
G. I. Gorchakov, V. N. Ermakov, V. M. Kopeikin, A. A. Isakov, A. V. Karpov, and A. V. Ulyanenko, “Electrical currents of saltation in windsand flux,” Dokl. Akad. Nauk 410 (2), 259–262 (2006).
O. G. Chkhetiani, E. B. Gledzer, M. S. Artamonova, and M. A. Iordanskii, “Dust resuspension under weak wind conditions: direct observations and model,” Atmos. Chem. Phys. 12 (11), 5147–5162 (2012).
G. I. Gorchakov, A. A. Titov, and D. V. Buntov, “Parameters of the lower layer of saltation over desert territories,” Dokl. Earth Sci. 424 (1), 90–94 (2009).
G. I. Gorchakov, A. V. Karpov, A. V. Sokolov, D. V. Buntov, and I. A. Zlobin, “Experimental and theoretical study of the trajectories of 2012. saltating sand particles over desert areas,” Atmos. Ocean. Opt. 25 (6), 423–428 (2012).
G. I. Gorchakov, A. V. Karpov, V. M. Kopeikin, I. A. Zlobin, D. V. Buntov, and A. V. Sokolov, “Study of the dynamics of saltating sand grains over desertified territories,” Dokl. Earth Sci. 452 (2), 1067–1073 (2013).
G. I. Gorchakov, V. M. Kopeikin, A. V. Karpov, D. V. Buntov, and A. V. Sokolov, “Specific charge of saltating sand grains over desert areas,” Dokl. Akad. Nauk 456 (4), 476–480 (2014).
G. I. Gorchakov, V. M. Kopeikin, A. V. Karpov, A. A. Titov, D. V. Buntov, G. A. Kuznetsov, R. A. Gushchin, O. I. Datsenko, G. A. Kurbatov, A. O. Seregin, and A. V. Sokolov, “Variations in the specific charge of saltating sand in a windsand flux over a desertified area,” Atmos. Ocean. Opt. 29 (3), 244–251 (2016).
E. B. Gledzer, I. G. Granberg, and O. G. Chkhetiani, “Convective aerosol fluxes near the ground surface,” Dokl. Earth Sci. 426 (1), 652–657 (2009).
E. B. Gledzer, I. G. Granberg, and O. G. Chkhetiani, “Air dynamics near the soil surface and convective emission of aerosol,” Izv., Atmos. Ocean. Phys. 46 (1), 29–40 (2010).
G. I. Gorchakov, P. O. Shishkov, V. M. Kopeikin, A. S. Emilenko, V. N. Sidorov, P. V. Zakharova, and K. A. Shukurov, “Aerosol in the convective atmospheric boundary layer,” in Proc. of the Intern. Conf. “Natural and Anthropogenic Aerosol,” St. Petersburg, Septemver 26–October 4, 1998 (Institute of Chemistry, SPbGU, 1998), p. 408–413 [in Russian].
G. I. Gorchakov and K. A. Shukurov, “Fluctuations in submicron-aerosol concentration under convective conditions,” Izv., Atmos. Ocean. Phys. 39 (1), 75–86 (2003).
S. F. Abdullaev, V. A. Maslov, and B. I. Nazarov, “Study of dust haze in arid zone,” Izv., Atmos. Ocean. Phys. 49 (3), 276–284 (2013).
B. I. Nazarov, S. F. Abdullaev, V. A. Maslov, N. A. Aburasulova, and M. S. Abdullaeva, “Studies of the distribution of an aerosol particles and variation in soot aerosols in the atmosphere,” Dokl. Akad. Nauk Respubliki Tadzhikistan 53 (5), 358–363 (2010).
S. F. Abdullaev, T. Shukurov, R. Marupov, and B. I. Nazarov, “Research of samples of soil and dust aerosol by method of IR spectroscopy,” Opt. Atmos. Okeana 26 (2), 166–171 (2013).
B. I. Nazarov, S. F. Abdullaev, and V. A. Maslov, “Variation of disperse structure of the aerosol during dusty storms,” Dokl. Akad. Nauk Respubliki Tadzhikistan 50 (5), 431–435 (2007).
B. I. Nazarov, S. F. Abdullaev, and V. A. Maslov, “About influence of a dusty aerosol on a temperature of air,” Dokl. Akad. Nauk Respubliki Tadzhikistan 50 (4), 340–344 (2007).
V. A. Maslov, B. I. Nazarov, and S. F. Abdullaev, “Influence of the change of concentration of the aerosol on the transparency of the atmosphere,” Dokl. Akad. Nauk Respubliki Tadzhikistan 50 (3), 241–247 (2007).
B. I. Nazarov, S. F. Abdullaev, and V. A. Maslov, “Change of optical parameters of strongly dusty air in conditions of arid zones,” Dokl. Akad. Nauk Respubliki Tadzhikistan 50 (7), 598–606 (2007).
B. I. Nazarov, S. F. Abdullaev, V. A. Maslov, M. A. Abdurasulova, and M. S. Abdullaeva, “Dust aerosol optical parameters for aeronet,” Dokl. Akad. Nauk Respubliki Tadzhikistan 53 (9), 685–689 (2010).
M. S. Artamonova, D. P. Gubanova, M. A. Iordanskii, V. A. Lebedev, L. O. Maksimenkov, V. M. Minashkin, Yu. I. Obvintsev, and O. G. Chkhetiani, “Variations of the aerosol concentration and chemical composition over the arid steppe zone of southern Russia in summer,” Geofiz. Protsessy Biosfera 15 (1), 5–24 (2016).
S. F. Abdullaev, V. A. Maslov, B. I. Nazarov, U. Madvaliev, and T. Davlatshoev, “The elemental composition of soils and dust aerosol in the south-central part of Tajikistan,” Atmos. Ocean. Opt. 28 (4), 347–358 (2015).
S. F. Abdullaev, V. A. Maslov, B. I. Nazarov, U. Madvaliev, and T. Davlatshoev, “The elemental composition of soil and dust aerosol in south-central part of Tajikistan,” Opt. Atmos. Okeana 28 (3), 246–255 (2015).
S. F. Abdullaev, V. A. Maslov, B. I. Nazarov, U. Madvaliev, A. A. Dzhuraev, and T. Davlatshoev, “Dynamics of the distribution of heavy metals and radioactive isotopes in soil and dust aerosol samples from south of Tajikistan,” Opt. Atmos. Okeana 27 (3), 207–214 (2014).
D. P. Gubanova, T. M. Kuderina, O. G. Chkhetiani, M. A. Iordanskii, Yu. I. Obvintsev, and M. S. Artamonova, “Experimental studies of aerosols in the atmosphere of semiarid landscapes of Kalmykia 2. Landscape-geochemical composition of aerosol particles,” Geofiz. Protsessy Biosfera 17 (3), 18–44 (2018).
O. Chkhetiani, N. V. Vazaeva, A. V. Chernokulsky, K. A. Shukurov, D. P. Gubanova, M. S. Artamonova, L. O. Maksimenkov, F. A. Kozlov, and T. M. Kuderina, “Analysis of mineral aerosol in the surface layer over the Caspian lowland desert by the data of 12 summer field campaigns in 2002–2020,” Atmosphere 12, 985 (2021).
A. V. Andronova, V. M. Minashkin, M. A. Iordanskii, I. A. Nevskii, M. Yu. Yablokov, Yu. I. Obvintsev, B. . Zudin, Yu. N. Ivanov, V. A. Lebedev, and N. P. Chizhikova, “Study of salt transport from new drained areas,” in Proc. of the Intern. Conf. “Natural and Anthropogenic Aerosol,” St. Petersburg, Septemver 26–October 4, 1998 (Indtitute of Chemistry, SPbGU, 1998), p. 414–446 [in Russian].
A. I. Perel’man and N. S. Kasimov, Landscape Geochemisty (Astreya-2000, Moscow, 1999) [in Russian].
V. V. Dobrovol’skii, Terrestrial Biochemistry. Selected Works. Vol. III (Nauchnyi mir, Moscow, 2009) [in Russian].
A. F. Stein, R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, “NOAA’S HYSPLIT atmospheric transport and dispersion modeling system,” Bull. Am. Meteor. Soc. 96, 2059–2077 (2015).
G. Rolph, A. Stein, and B. Stunder, “Real-time environmental applications and display system: READY,” Environ. Model. Software 95, 210–228 (2017).
www.arl.noaa.gov. Cited February 21, 2022.
M. V. Balahanov, “On the creation of a metrological assurance system for the measurement of dispersion parameters of aerosols and suspensions,” Al’manah Sovremennoj Metrologii, No. 1, 185–232 (2014).
https://niki-mlt.ru/article/filtry-afa-analiticheskie-aerozolnye.html. Cited February 21, 2022.
V. K. Karandashev, A. N. Turanov, T. A. Orlova, A. E. Lezhnev, S. V. Nosenko, N. I. Zolotareva, and I. R. Moskvina, “Inductively coupled plasma mass spectrometry in the elemental analysis of environmental objects,” Zavodskaya Laboratoriya. Diagnostika Materialov 73 (1), 12–22 (2007).
V. I. Kudryashov, “Analysis of the elemental composition of atmospheric aerosols by physical methods,” in Problems of Atmospheric Physics (SPbGU, St. Petersburg, 1997), no. 20, p. 97–130 [in Russian].
H. Erhardt, X-Ray Fluorescence Analysis. Application in Factory Laboratories (Metallurgiya, Moscow, 1985) [in Russian].
V. V. Vinogradova, “Influence of climate conditions on the man in arid lands of European Russia,” Izv. Ross. Akad. Nauk. Ser. Geografich., No. 2, 68–81 (2012).
A. N. Zolotokrylin, T. B. Titkova, and E. A. Cherenkova, “Humidification of drylands in European Russia: The present and future,” Arid Ecosystems 4 (2), 49–54 (2014).
G. S. Golitsyn, I. G, Granberg, A. E. Aloyan, A. V. Andronova, V. O. Arutyunyan, B. V. Vinogradov, E. B. Gabunshchina, G. I. Gorchakov, E. M. Dobryshman, and V. M. Ponomarev, “Study of thermoconvective carryover of arid aerosol in the Black Lands of Kalmykia,” in Proc. of the Intern. Conf. “Natural and Anthropogenic Aerosol,” St. Petersburg, Septemver 26–October 4, 1998 (Indtitute of Chemistry, SPbGU, 1998), p. 342–348 [in Russian].
V. V. Ivanov, Ecological Geochemisty of Elements. Book 2. Main p-elements (Nedra, Moscow, 1994) [in Russian].
A. P. Vinogradov, “Average content of chemical elements in main types of erupted crustal rocks,” Geohimiya, No. 7, 555–571 (1962).
ACKNOWLEDGMENTS
The authors thank V.A. Lebedev, A.A. Khapaev, and Yu.I. Obvintsev for assistance in support and conducting the field measurements as part of long-term observations of aerosol physicochemical parameters in Kalmykia and at IAP RAS TSS.
Funding
This work was supported by the Russian Science Foundation (grant no. 20-17-00214).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest.
Additional information
Translated by O. Bazhenov
Rights and permissions
About this article
Cite this article
Gubanova, D.P., Chkhetiani, O.G., Kuderina, T.M. et al. Long-Term Variability of the Composition of Near-Surface Aerosol over Desertified and Arid Zones in Southern Russia. Atmos Ocean Opt 35, 680–690 (2022). https://doi.org/10.1134/S1024856022060148
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856022060148