Skip to main content
Log in

Long-Term Variability of the Composition of Near-Surface Aerosol over Desertified and Arid Zones in Southern Russia

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

We analyzed multiyear (2007–2021) complex experimental studies of microphysical parameters, mass concentration, and elemental composition of aerosol particles in the near-surface atmospheric layer of semiarid zones in the south of European Russia. Background values of the daily average mass concentration of near-surface aerosols in desertified areas of Kalmykia and the dry-steppe zone of Rostov oblast for the hot summer period are found to be 125 and 34 μg/m3, respectively. The particle size distribution functions specific for atmospheric aerosols of the south of European Russia, are determined. An interrelation is found between the particle emission from the surface to the atmosphere and the main atmospheric processes. Long-term variations in elemental composition of near-surface aerosol are studied. Minor variations are identified in the mass concentrations of Cd, Hg, and Cu in the composition of aerosol particles in Rostov oblast. The elemental composition of Kalmykia aerosols stronger varies in terms of the contents of both natural and technogenic elements, mainly of chemical elements of salt balance and heavy metals. It is shown that most elements are weakly accumulated in aerosols, and their differentiation is heavier dependent on the mosaic character of the underlying surface. The multiyear period under study is characterized by the tendency of removing the harmful admixtures from the atmosphere of desertified territories in the south of European Russia due to reducing the climate aridization and mitigating the anthropogenic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. United Nations Framework Convention on Climate Change. https://unfccc.int/event/cop-26#eq-32. Cited February 21, 2022.

  2. T. M. Kuderina, “Atmospheric aerosol as an indicator of desertification in arid and subarid landscapes of the European Russia,” in Proc. of the VII Intern. Symp. “Steppes of Northern Eurasia” (IS UrB RAS; Dimur, Orenburg, 2015), p. 442–443 [in Russian].

  3. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 2006).

    Google Scholar 

  4. K. Ya, Kondrat’ev, L. S. Ivlev, and V. F. Krapivin, Atmospheric Aerosols: Properties, Generation Processes, and Effects. From Nano- to Global Scales (VVM, St. Petersburg, 2007 [in Russian].

    Google Scholar 

  5. O. E. Semenov, Introduction to Experimental Meteorology and Climatology of Sandstorms (Almaty, 2011) [in Russian].

    Google Scholar 

  6. Yu. V. Zhulanov, V. A. Zagainov, A. A. Lushnikov, Yu. S. Lyubovtseva, I. A. Nevskii, and L. D. Stulov, “Fine an submicron aerosol of an arid zone,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 22 (5), 488-495 (1986).

    Google Scholar 

  7. Soviet-American Experiment on the Study of Arid Aerosol, Ed. by G.S. Golitsyn(NPO “Taifun”, St. Petersburg, 1992) [in Russian].

  8. S. F. Abdullaev, B. I. Nazarov, A. Kh. Shukurov, and A. M. Zhuraev, “Microphysical properties of dust aerosol in an arid zone,” Dokl. Akad. Nauk Respubliki Tadzhikistan 38 (7-8), 5–9 (1995).

    Google Scholar 

  9. S. F. Abdullaev, B. I. Nazarov, A. Kh. Shukurov, and A. M. Zhuraev, “Variability of air transparency under the effect of carryover of dust aerosol in high-mountain arid zone of Tadzhikistan,” Dokl. Akad. Nauk Respubliki Tadzhikistan 38 (7-8), 9–14 (1995).

    Google Scholar 

  10. B. I. Nazarov, V. A. Maslov, and S. F. Abdullaev, “Optical and microphysical parameters of arid dust aerosol,” Izv., Atmos. Ocean. Phys. 46 (4), 468–474 (2010).

    Article  Google Scholar 

  11. B. I. Nazarov, S. F. Abdullaev, and V. A. Maslov, “Studies of temperature effects of dust storms,” Izv., Atmos. Ocean. Phys. 46 (4), 475–481 (2010).

    Article  Google Scholar 

  12. G. I. Gorchakov, P. O. Shishkov, V. M. Kopeikin, A. S. Emilenko, A. A. Iskakov, P. V. Zakharova, V. N. Sidorov, and K. A. Shukurov, “Lidar nephelometric sounding of arid aerosol,” Atmos. Ocean. Opt. 11 (10), 958–962 (1998).

    Google Scholar 

  13. G. I. Gorchakov, B. M. Koprov, and K. A. Shukurov, “Arid submicron aerosol transport by vortices,” Izv., Atmos. Ocean. Phys. 39 (5), 536–547 (2003).

    Google Scholar 

  14. D. P. Gubanova, O. G. Chkhetiani, T. M. Kuderina, M. A. Iordanskii, Yu. I. Obvintsev, and M. S. Artamonova, “Experimental studies of aerosols in the atmosphere of semiarid landscapes of Kalmykia. 1. Microphysical parameters and mass concentration of aerosol particles” Geofiz. Protsessy Biosfera, No. 1, 5–29 (2018).

    Google Scholar 

  15. E. A. Malinovskaya, O. G. Chkhetiani, I. N. Panchishkina, G. G. Petrova, and A. I. Petrov, “The relationship between the surface electric field and arid aerosol under different wind conditions,” Dokl. RAN. Nauki Zemle 502 (2), 115–124 (2022).

    Google Scholar 

  16. E. A. Malinovskaya, O. G. Chkhetiani, and L. O. Maksimenkov, “Influence of wind direction on the size distribution of aeolian microparticles,” Izv. RAN. Fiz. Atmos. Okeana 57 (5), 539–554 (2021).

    Google Scholar 

  17. G. I. Gorchakov, D. V. Buntov, A. V. Karpov, V. M. Kopeikin, S. F. Mirsaitov, R. A. Gushchin, and O. I. Datsenko, “The saltating particle aleurite mode in wind–sand flux over a desertified area,” Dokl. Earth Sci. 488 (1), 1103–1106 (2019).

    Article  ADS  Google Scholar 

  18. G. I. Gorchakov, D. V. Buntov, A. V. Karpov, V. M. Kopeikin, S. F. Mirsaitov, R. A. Gushchin, and O. I. Datsenko, “Wind effect on the size distribution of saltating particles,” Atmos. Ocean. Opt. 33 (2), 198–205 (2020).

    Article  Google Scholar 

  19. G. I. Gorchakov, V. N. Ermakov, V. M. Kopeikin, A. A. Isakov, A. V. Karpov, and A. V. Ulyanenko, “Electrical currents of saltation in windsand flux,” Dokl. Akad. Nauk 410 (2), 259–262 (2006).

    Google Scholar 

  20. O. G. Chkhetiani, E. B. Gledzer, M. S. Artamonova, and M. A. Iordanskii, “Dust resuspension under weak wind conditions: direct observations and model,” Atmos. Chem. Phys. 12 (11), 5147–5162 (2012).

    Article  ADS  Google Scholar 

  21. G. I. Gorchakov, A. A. Titov, and D. V. Buntov, “Parameters of the lower layer of saltation over desert territories,” Dokl. Earth Sci. 424 (1), 90–94 (2009).

    Article  ADS  Google Scholar 

  22. G. I. Gorchakov, A. V. Karpov, A. V. Sokolov, D. V. Buntov, and I. A. Zlobin, “Experimental and theoretical study of the trajectories of 2012. saltating sand particles over desert areas,” Atmos. Ocean. Opt. 25 (6), 423–428 (2012).

    Article  Google Scholar 

  23. G. I. Gorchakov, A. V. Karpov, V. M. Kopeikin, I. A. Zlobin, D. V. Buntov, and A. V. Sokolov, “Study of the dynamics of saltating sand grains over desertified territories,” Dokl. Earth Sci. 452 (2), 1067–1073 (2013).

    Article  ADS  Google Scholar 

  24. G. I. Gorchakov, V. M. Kopeikin, A. V. Karpov, D. V. Buntov, and A. V. Sokolov, “Specific charge of saltating sand grains over desert areas,” Dokl. Akad. Nauk 456 (4), 476–480 (2014).

    Google Scholar 

  25. G. I. Gorchakov, V. M. Kopeikin, A. V. Karpov, A. A. Titov, D. V. Buntov, G. A. Kuznetsov, R. A. Gushchin, O. I. Datsenko, G. A. Kurbatov, A. O. Seregin, and A. V. Sokolov, “Variations in the specific charge of saltating sand in a windsand flux over a desertified area,” Atmos. Ocean. Opt. 29 (3), 244–251 (2016).

    Article  Google Scholar 

  26. E. B. Gledzer, I. G. Granberg, and O. G. Chkhetiani, “Convective aerosol fluxes near the ground surface,” Dokl. Earth Sci. 426 (1), 652–657 (2009).

    Article  ADS  Google Scholar 

  27. E. B. Gledzer, I. G. Granberg, and O. G. Chkhetiani, “Air dynamics near the soil surface and convective emission of aerosol,” Izv., Atmos. Ocean. Phys. 46 (1), 29–40 (2010).

    Article  Google Scholar 

  28. G. I. Gorchakov, P. O. Shishkov, V. M. Kopeikin, A. S. Emilenko, V. N. Sidorov, P. V. Zakharova, and K. A. Shukurov, “Aerosol in the convective atmospheric boundary layer,” in Proc. of the Intern. Conf. “Natural and Anthropogenic Aerosol,” St. Petersburg, Septemver 26–October 4, 1998 (Institute of Chemistry, SPbGU, 1998), p. 408–413 [in Russian].

  29. G. I. Gorchakov and K. A. Shukurov, “Fluctuations in submicron-aerosol concentration under convective conditions,” Izv., Atmos. Ocean. Phys. 39 (1), 75–86 (2003).

    Google Scholar 

  30. S. F. Abdullaev, V. A. Maslov, and B. I. Nazarov, “Study of dust haze in arid zone,” Izv., Atmos. Ocean. Phys. 49 (3), 276–284 (2013).

    Article  Google Scholar 

  31. B. I. Nazarov, S. F. Abdullaev, V. A. Maslov, N. A. Aburasulova, and M. S. Abdullaeva, “Studies of the distribution of an aerosol particles and variation in soot aerosols in the atmosphere,” Dokl. Akad. Nauk Respubliki Tadzhikistan 53 (5), 358–363 (2010).

    Google Scholar 

  32. S. F. Abdullaev, T. Shukurov, R. Marupov, and B. I. Nazarov, “Research of samples of soil and dust aerosol by method of IR spectroscopy,” Opt. Atmos. Okeana 26 (2), 166–171 (2013).

    Google Scholar 

  33. B. I. Nazarov, S. F. Abdullaev, and V. A. Maslov, “Variation of disperse structure of the aerosol during dusty storms,” Dokl. Akad. Nauk Respubliki Tadzhikistan 50 (5), 431–435 (2007).

    Google Scholar 

  34. B. I. Nazarov, S. F. Abdullaev, and V. A. Maslov, “About influence of a dusty aerosol on a temperature of air,” Dokl. Akad. Nauk Respubliki Tadzhikistan 50 (4), 340–344 (2007).

    Google Scholar 

  35. V. A. Maslov, B. I. Nazarov, and S. F. Abdullaev, “Influence of the change of concentration of the aerosol on the transparency of the atmosphere,” Dokl. Akad. Nauk Respubliki Tadzhikistan 50 (3), 241–247 (2007).

    Google Scholar 

  36. B. I. Nazarov, S. F. Abdullaev, and V. A. Maslov, “Change of optical parameters of strongly dusty air in conditions of arid zones,” Dokl. Akad. Nauk Respubliki Tadzhikistan 50 (7), 598–606 (2007).

    Google Scholar 

  37. B. I. Nazarov, S. F. Abdullaev, V. A. Maslov, M. A. Abdurasulova, and M. S. Abdullaeva, “Dust aerosol optical parameters for aeronet,” Dokl. Akad. Nauk Respubliki Tadzhikistan 53 (9), 685–689 (2010).

    Google Scholar 

  38. M. S. Artamonova, D. P. Gubanova, M. A. Iordanskii, V. A. Lebedev, L. O. Maksimenkov, V. M. Minashkin, Yu. I. Obvintsev, and O. G. Chkhetiani, “Variations of the aerosol concentration and chemical composition over the arid steppe zone of southern Russia in summer,” Geofiz. Protsessy Biosfera 15 (1), 5–24 (2016).

    Google Scholar 

  39. S. F. Abdullaev, V. A. Maslov, B. I. Nazarov, U. Madvaliev, and T. Davlatshoev, “The elemental composition of soils and dust aerosol in the south-central part of Tajikistan,” Atmos. Ocean. Opt. 28 (4), 347–358 (2015).

    Article  Google Scholar 

  40. S. F. Abdullaev, V. A. Maslov, B. I. Nazarov, U. Madvaliev, and T. Davlatshoev, “The elemental composition of soil and dust aerosol in south-central part of Tajikistan,” Opt. Atmos. Okeana 28 (3), 246–255 (2015).

    Google Scholar 

  41. S. F. Abdullaev, V. A. Maslov, B. I. Nazarov, U. Madvaliev, A. A. Dzhuraev, and T. Davlatshoev, “Dynamics of the distribution of heavy metals and radioactive isotopes in soil and dust aerosol samples from south of Tajikistan,” Opt. Atmos. Okeana 27 (3), 207–214 (2014).

    Google Scholar 

  42. D. P. Gubanova, T. M. Kuderina, O. G. Chkhetiani, M. A. Iordanskii, Yu. I. Obvintsev, and M. S. Artamonova, “Experimental studies of aerosols in the atmosphere of semiarid landscapes of Kalmykia 2. Landscape-geochemical composition of aerosol particles,” Geofiz. Protsessy Biosfera 17 (3), 18–44 (2018).

    Google Scholar 

  43. O. Chkhetiani, N. V. Vazaeva, A. V. Chernokulsky, K. A. Shukurov, D. P. Gubanova, M. S. Artamonova, L. O. Maksimenkov, F. A. Kozlov, and T. M. Kuderina, “Analysis of mineral aerosol in the surface layer over the Caspian lowland desert by the data of 12 summer field campaigns in 2002–2020,” Atmosphere 12, 985 (2021).

    Article  ADS  Google Scholar 

  44. A. V. Andronova, V. M. Minashkin, M. A. Iordanskii, I. A. Nevskii, M. Yu. Yablokov, Yu. I. Obvintsev, B. . Zudin, Yu. N. Ivanov, V. A. Lebedev, and N. P. Chizhikova, “Study of salt transport from new drained areas,” in Proc. of the Intern. Conf. “Natural and Anthropogenic Aerosol,” St. Petersburg, Septemver 26–October 4, 1998 (Indtitute of Chemistry, SPbGU, 1998), p. 414–446 [in Russian].

  45. A. I. Perel’man and N. S. Kasimov, Landscape Geochemisty (Astreya-2000, Moscow, 1999) [in Russian].

  46. V. V. Dobrovol’skii, Terrestrial Biochemistry. Selected Works. Vol. III (Nauchnyi mir, Moscow, 2009) [in Russian].

  47. A. F. Stein, R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, “NOAA’S HYSPLIT atmospheric transport and dispersion modeling system,” Bull. Am. Meteor. Soc. 96, 2059–2077 (2015).

    Article  ADS  Google Scholar 

  48. G. Rolph, A. Stein, and B. Stunder, “Real-time environmental applications and display system: READY,” Environ. Model. Software 95, 210–228 (2017).

    Article  Google Scholar 

  49. www.arl.noaa.gov. Cited February 21, 2022.

  50. M. V. Balahanov, “On the creation of a metrological assurance system for the measurement of dispersion parameters of aerosols and suspensions,” Al’manah Sovremennoj Metrologii, No. 1, 185–232 (2014).

    Google Scholar 

  51. https://niki-mlt.ru/article/filtry-afa-analiticheskie-aerozolnye.html. Cited February 21, 2022.

  52. V. K. Karandashev, A. N. Turanov, T. A. Orlova, A. E. Lezhnev, S. V. Nosenko, N. I. Zolotareva, and I. R. Moskvina, “Inductively coupled plasma mass spectrometry in the elemental analysis of environmental objects,” Zavodskaya Laboratoriya. Diagnostika Materialov 73 (1), 12–22 (2007).

    Google Scholar 

  53. V. I. Kudryashov, “Analysis of the elemental composition of atmospheric aerosols by physical methods,” in Problems of Atmospheric Physics (SPbGU, St. Petersburg, 1997), no. 20, p. 97–130 [in Russian].

  54. H. Erhardt, X-Ray Fluorescence Analysis. Application in Factory Laboratories (Metallurgiya, Moscow, 1985) [in Russian].

    Google Scholar 

  55. V. V. Vinogradova, “Influence of climate conditions on the man in arid lands of European Russia,” Izv. Ross. Akad. Nauk. Ser. Geografich., No. 2, 68–81 (2012).

  56. A. N. Zolotokrylin, T. B. Titkova, and E. A. Cherenkova, “Humidification of drylands in European Russia: The present and future,” Arid Ecosystems 4 (2), 49–54 (2014).

    Article  Google Scholar 

  57. G. S. Golitsyn, I. G, Granberg, A. E. Aloyan, A. V. Andronova, V. O. Arutyunyan, B. V. Vinogradov, E. B. Gabunshchina, G. I. Gorchakov, E. M. Dobryshman, and V. M. Ponomarev, “Study of thermoconvective carryover of arid aerosol in the Black Lands of Kalmykia,” in Proc. of the Intern. Conf. “Natural and Anthropogenic Aerosol,” St. Petersburg, Septemver 26–October 4, 1998 (Indtitute of Chemistry, SPbGU, 1998), p. 342–348 [in Russian].

  58. V. V. Ivanov, Ecological Geochemisty of Elements. Book 2. Main p-elements (Nedra, Moscow, 1994) [in Russian].

  59. A. P. Vinogradov, “Average content of chemical elements in main types of erupted crustal rocks,” Geohimiya, No. 7, 555–571 (1962).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V.A. Lebedev, A.A. Khapaev, and Yu.I. Obvintsev for assistance in support and conducting the field measurements as part of long-term observations of aerosol physicochemical parameters in Kalmykia and at IAP RAS TSS.

Funding

This work was supported by the Russian Science Foundation (grant no. 20-17-00214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Gubanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubanova, D.P., Chkhetiani, O.G., Kuderina, T.M. et al. Long-Term Variability of the Composition of Near-Surface Aerosol over Desertified and Arid Zones in Southern Russia. Atmos Ocean Opt 35, 680–690 (2022). https://doi.org/10.1134/S1024856022060148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022060148

Keywords:

Navigation