Skip to main content
Log in

Propagation of High-Power Phase-Modulated Femtosecond Laser Pulses in Air in the Self-Channeling and Filamentation Modes

  • OPTICAL WAVES PROPAGATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Propagation of high-power phase-modulated femtosecond laser pulses in air is simulated numerically. Spatial modulation of the initial wavefront of the pulse was implemented using a programmable phase mask consisting of checkered zones with a varied phase jump of the wave. Within the framework of the numerical solution of the nonlinear Schrödinger equation for the time-averaged amplitude of the electric field, modes of self-focusing, filamentation, and postfilamentation channeling of radiation for phase-modulating masks with different phase shifts at boundaries of adjacent segments are studied. It is shown that for certain types of phase modulation of the pulse the filamentation domain in air can be significantly shifted (in the coordinate) and elongated as compared with a nonmodulated pulse. In addition, it is established that using phase modulation makes it possible to decrease angular divergence of high-intensity light channels forming at the stage of postfilamentation propagation. This provides the possibility of radiation self-channeling at distances multiple exceeding the Rayleigh length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Self-focusing: Past and Present. Fundamentals and Prospects, Ed. by R.W. Boyd, S.G. Lukishova, and Y.R. Shen (Springer, Berlin, 2009).

    Google Scholar 

  2. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).

    Article  ADS  Google Scholar 

  3. S. V. Chekalin and V. P. Kandidov, “From self-focusing light beams to femtosecond laser pulse filamentation,” Phys.-Uspekhi 56 (2), 123–140 (2013).

    Article  ADS  Google Scholar 

  4. L. Woste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, Chr. Werner, S. Niedermeier, H. Schillinger, and R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).

    Google Scholar 

  5. M. Rodriguez, R. Bourayou, G. Mejean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.‑P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E, No. 69, 036607-1–7 (2004).

  6. R. Ackermann, G. Mechain, G. Mejean, R. Bourayou, M. Rodriguez, K. Stelmaszczyk, J. Kasparian, J. Yu, E. Salmon, S. Tzortzakis, Y. B. Andre, J. F. Bourrillon, L. Tamin, J. P. Cascelli, C. Campo, C. Davoise, A. Mysyrowicz, R. Sauerbrey, L. Woste, and J.-P. Wolf, “Influence of negative leader propagation on the triggering and guiding of high voltage discharges by laser filaments,” Appl. Phys. B 82, 561–566 (2006).

    Article  ADS  Google Scholar 

  7. M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durecu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Theberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21 (22), 26836–26845 (2013).

    Article  ADS  Google Scholar 

  8. Yu. E. Geints and A. A. Zemlyanov, “Ring-Gaussian laser pulse filamentation in a self-induced diffraction waveguide,” J. Opt. 19, 105502 (2017).

    Article  ADS  Google Scholar 

  9. V. O. Kompanets, S. V. Chekalin, O. G. Kosareva, A. V. Grigor’evskii, and V. P. Kandidov, “Conical emission of a femtosecond laser pulse focused by an axicon into a K 108 glass,” Quantum Electron. 36 (9), 821–824 (2006).

    Article  ADS  Google Scholar 

  10. M. Mills, M. Heinrich, M. Kolesik, and D. Christodoulides, “Extending optical filaments using auxiliary dress beams,” J. Phys. B 48 (9), 094014 (2015).

    Article  ADS  Google Scholar 

  11. Yu. E. Geints and A. A. Zemlyanov, “Regularities of femtosecond filamentation in the case of superposition of Gaussian and annular laser beams,” Quantum Electron. 47 (8), 722–729 (2017)

    Article  ADS  Google Scholar 

  12. Y. E. Geints and A. A. Zemlyanov, “Dynamics of femtosecond synthesized coronary profile laser beam filamentation in air," J. Opt. 23 (10), 105502 (2021).

    Article  ADS  Google Scholar 

  13. D. V. Pushkarev, A. S. Lar’kin, E. V. Mitina, N. A. Zhidovtsev, D. S. Uryupina, R. V. Volkov, S. V. Karpeev, S. N. Khonina, A. A. Karabutov, Yu. E. Geints, O. G. Kosareva, and A. B. Savel’ev, “Robust multifilament arrays in air by Dammann grating,” Opt. Express 29, 34189–34204 (2021).

    Article  ADS  Google Scholar 

  14. L. Berge, S. Skupin, F. Lederer, G. Mejean, J. Yu, J. Kasparian, E. Salmon, J.-P. Wolf, M. Rodriguez, L. Woste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002 (2004).

    Article  ADS  Google Scholar 

  15. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” JETP 23 (5), 924 (1966).

    ADS  Google Scholar 

  16. Yu. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400 nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99, 181114 (2011).

    Article  ADS  Google Scholar 

  17. G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization,” Appl. Phys. B 79 (3), 379–382 (2004).

    Article  Google Scholar 

  18. Yu. E. Geints, A. A. Zemlyanov, A. A. Ionin, D. V. Mokrousova, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, “Comparative analysis of post-focal filamentation of focused UV and IR laser pulses in air,” Quantum Electron. 45 (4), 321–329 (2015).

    Article  ADS  Google Scholar 

  19. J.-F. Daigle, O. G. Kosareva, N. A. Panov, T.-J. Wang, S. Hosseini, S. Yuan, G. Roy, and S. L. Chin, “Formation and evolution of intense, post-filamentation, ionization-free low divergence beams,” Opt. Commun. 284, 3601–3606 (2011).

    Article  ADS  Google Scholar 

  20. A. Couairon, E. Brambilla, T. Corti, D. Majus, O. Ramirez-Gongora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Special Top. 199, 5–76 (2011).

    Article  ADS  Google Scholar 

  21. Yu. E. Geints and A. A. Zemlyanov, “Near- and mid-IR ultrashort laser pulse filamentation in a molecular atmosphere: A comparative analysis,” Appl. Opt. 56, 1397–1403 (2017).

    Article  ADS  Google Scholar 

  22. A. A. Zemlyanov, A. D. Bulygin, Yu. E. Geints, and O. V. Minina, “Dynamics of light structures during filamentation of femtosecond laser pulses in air,” Atmos. Ocean. Opt. 29 (5), 395–403 (2016).

    Article  Google Scholar 

  23. M. Mills, D. Christodoulides, and M. Kolesik, “Dressed optical filaments,” Opt. Lett. 38, 25–27 (2013).

    Article  ADS  Google Scholar 

Download references

Funding

The investigations with the use of symmetric phase masks were supported by the Russian Science Foundation, project no. 21-12-00109); the studies of the asymmetric phase masks were supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. E. Geints, A. A. Zemlyanov or O. V. Minina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geints, Y.E., Zemlyanov, A.A. & Minina, O.V. Propagation of High-Power Phase-Modulated Femtosecond Laser Pulses in Air in the Self-Channeling and Filamentation Modes. Atmos Ocean Opt 35, 475–484 (2022). https://doi.org/10.1134/S1024856022050104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022050104

Keywords:

Navigation