Skip to main content
Log in

Ozone Anomalies in the Stratosphere of the Arctic and North Eurasia: Comparison of the 2011 and 2020 Events Using TEMIS and Aura MLS Data

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

In winter–spring of 2019–2020 and 2010–2011 the strongest ozone anomalies in the Arctic in the entire satellite era were observed. They were due to extraordinarily strong and long-lasting stratospheric polar vortices, entailing unprecedented chemical ozone destruction. The analysis of the TEMIS data indicates that the relative total ozone content (TOC) deviations from the multiyear (2003–2019 except 2011) average were 37–44% in 2011 and 45–55% in 2020 at Arctic sites; and 27–36% in 2011 and 27–32% in 2020 at subarctic latitudes. Based on Aura MLS data, the minimal temperatures over the Arctic were 8–12% below normal in 2011 and 8–13% below normal in 2020. The ozone concentration for Alert station dropped to 23% of the multiyear average at the altitude of 20 km on March 22, 2011, and to 6% at the altitude ~19 km on April 15, 2020. A detailed correlation analysis showed that deviations in concentrations of water vapor and ozone, water vapor and temperature, and ozone and temperature from multiyear averages correlate stronger in 2020 than 2011. The correlations decrease toward the vortex periphery owing to the exchange of air masses between the Arctic and middle latitudes, until becoming weakly significant outside the Arctic circle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. H. E. Rieder and L. M. Polvani, “Are recent arctic ozone losses caused by increasing greenhouse gases?,” Geophys. Rev. Lett. 40, 4437–4441 (2013). https://doi.org/10.1002/grl.50835

    Article  ADS  Google Scholar 

  2. M. Rex, R. J. Salawitch, P. Gathen, N. R. P. Harris, M. P. Chipperfield, and B. Naujokat, “Arctic ozone loss and climate change,” Geophys. Rev. Lett. 31, L04116 (2004). https://doi.org/10.1029/2003GL018844

    Article  ADS  Google Scholar 

  3. M. Rex, R. J. Salawitch, H. Deckelmann, P. Gathen, N. R. P. Harris, M. P. Chipperfield, B. Naujokat, E. Reimer, M. Allaart, S. B. Andersen, R. Bevilacqua, G. O. Braathen, H. Claude, J. Davies, H. De Backer, H. Dier, V. Dorokhov, H. Fast, M. Gerding, S. Godin-Beekmann, K. Hoppel, B. Johnson, E. Kyro, Z. Litynska, D. Moore, H. Nakane, M. C. Parrondo, A. D. Risley Jr., P. Skrivankova, R. Stubi, P. Viatte, V. Yushkov, and C. Zerefos, “Arctic winter 2005: Implications for stratospheric ozone loss and climate change,” Geophys. Rev. Lett. 33, L23808 (2006). https://doi.org/10.1029/2006GL026731

    Article  ADS  Google Scholar 

  4. D. Hu, Z. Guan, W. Tian, and R. Ren, “Recent strengthening of the stratospheric Arctic vortex response to warming in the Central North Pacific,” Nat. Commun, No. 9, 1697 (2018). https://doi.org/10.1038/s41467-018-04138-3

  5. M. Weber, C. Arosio, W. Feng, S. S. Dhomse, M. P. Chipperfield, A. Meier, J. P. Burrows, K. Eichmann, A. Richter, and A. Rozanov, “The unusual stratospheric Arctic winter 2019/20: Chemical ozone loss from satellite observations and TOMCAT chemical transport model,” J. Geophys. Res.: Atmos. 126, e2020JD034386 (2021). https://doi.org/10.1029/2020JD034386

  6. I. Wohltmann, P. Gathen, R. Lehmann, M. Maturilli, H. Deckelmann, G. L. Manney, J. Davies, D. Tarasick, N. Jepsen, R. Kivi, N. Lyall, and M. Re, “Near-complete local reduction of Arctic stratospheric ozone by severe chemical loss in spring 2020,” Geophys. Rev. Lett. 47, e2020GL089547 (2020). https://doi.org/10.1029/2020GL089547

  7. J. Kuttippurath, W. Feng, R. Muller, P. Kumar, S. Raj, G. P. Gopikrishnan, and R. Roy, “Exceptional loss in ozone in the Arctic winter/spring of 2019/2020,” Atmos. Chem. Phys. 21, 14019–14037 (2021). https://doi.org/10.5194/acp-21-14019-2021

    Article  ADS  Google Scholar 

  8. O. E. Bazhenov, A. A. Nevzorov, A. V. Nevzorov, S. I. Dolgii, and A. P. Makeev, “Disturbance of the stratosphere over Tomsk prior to the 2018 major sudden stratospheric warming: Effect of ClO dimer cycle,” Opt. Mem. Neural Networks 30 (2), 146–156 (2021). https://doi.org/10.3103/S1060992X21020065

    Article  Google Scholar 

  9. J. Rao and C. I. Garfinkel, “Arctic ozone loss in March 2020 and its seasonal prediction in CFSv2: A comparative study with the 1997 and 2011 cases,” J. Geophys. Res.: Atmos. 125, e2020JD033524 (2020). https://doi.org/10.1029/2020JD033524

  10. R. Van der A, “Tropospheric emission monitoring internet service,” in Abstr. of the EGU General Assembly, Vienna, Austria, May 2–7, 2010.

  11. G. L. Manney, N. J. Livesey, M. L. Santee, L. Froidevaux, A. Lambert, Z. D. Lawrence, L. F. Millan, J. L. Neu, W. G. Read, M. J. Schwartz, and R. A. Fuller, “Record low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters,” Geophys. Rev. Lett. 47 (2020). https://doi.org/10.1029/2020GL089063

  12. N. Livesey, W. Read, L. Froidevaux, A. Lambert, M. Santee, M. Schwartz, L. Millan, R. Jarnot, P. Wagner, D. Hurst, K. Walker, P. Sheese, and G. Nedoluha, “Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the aura microwave limb sounder MLS and their implications for studies of variability and trends,” Atmos. Chem. Phys. 21, 15409–15430 (2021). https://doi.org/10.5194/acp-21-15409-2021

    Article  ADS  Google Scholar 

  13. O. E. Bazhenov, “Ozone anomaly during winter-spring 2019-2020 in the Arctic and over the north of Eurasia using satellite (Aura MLS/OMI) observations,” Atmos. Ocean. Opt. 4 (6), 653–658 (2021). https://doi.org/10.1134/S102485602106004X

    Article  Google Scholar 

  14. A. Inness, S. Chabrillat, J. Flemming, V. Huijnen, B. Langenrock, J. Nicolas, I. Polichtchouk, and M. Razinger, “Exceptionally low Arctic stratospheric ozone in spring 2020 as seen in the CAMS reanalysis,” J. Geophys. Res.: Atmos. 125 (23), e2020JD033563 (2020). https://doi.org/10.1029/2020JD033563

  15. S. Solomon, “Stratospheric ozone depletion: A review of concepts and history,” Rev. Geophys. 37 (3), 275–316 (1999). https://doi.org/10.1029/1999RG900008

    Article  ADS  Google Scholar 

  16. O. E. Bazhenov, “Increased humidity in the stratosphere as a possible factor of ozone destruction in the Arctic during the spring 2011 using Aura MLS observations,” Int. J. Remote Sens. 40 (9), 3448–3460 (2019). https://doi.org/10.1080/01431161.2018.1547449

    Article  Google Scholar 

  17. S. P. Smyshlyaev, P. N. Vargin, and M. A. Motsakov, “Numerical modeling of ozone loss in the exceptional arctic stratosphere winter-spring of 2020,” Atmosphere 12 (11), 1470 (2021).

    Article  ADS  Google Scholar 

  18. A. N. Luk’yanov, P. N. Vargin, and V. A. Yushkov, “Lagrange studies of anomalously stable arctic stratospheric vortex observed in winter 2019–2020,” Izv., Atmos. Ocean. Phys. 57 (3), 247–253 (2021).

    Article  Google Scholar 

  19. N. D. Tsvetkova, P. N. Vargin, A. N. Luk’yanov, B. M. Kiryushov, V. A. Yushkov, and V. U. Khattatov, “Studying chemical ozone depletion and dynamic processes in the Arctic stratosphere in the winter of 2019/2020,” Meteorol. Gidrol., No. 9, 70–83 (2021). https://doi.org/10.52002/0130-2906-2021-9-70-83

  20. P. Gathen, R. Kivi, I. Wohltmann, R. Salawitch, and M. Rex, “Climate change favours large seasonal loss of Arctic ozone,” Nat. Commun, No. 12, 3886 (2021). https://doi.org/10.1038/s41467-021-24089-6

  21. P. N. Vargin, S. V. Kostrykin, E. M. Volodin, A. I. Pogoreltsev, and K. Wei, “Arctic stratosphere circulation changes in the 21st century in simulations of INM CM5,” Atmosphere 13 (1), 25 (2022). https://doi.org/10.3390/atmos13010025

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

TOC measurements from Geophysical Observatory in the Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch, Russian Academy of Sciences, used in this work to calculate the deviations of 2019/2020 and 2010/2011 TOCs from multiyear average, were kindly provided by S.V. Smirnov from the Laboratory of Physics of Climatic Systems.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences). In our work, we used the instrumentations from the Center for collective use, Atmosphere, under the partial support from Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-661).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Bazhenov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, O.E. Ozone Anomalies in the Stratosphere of the Arctic and North Eurasia: Comparison of the 2011 and 2020 Events Using TEMIS and Aura MLS Data. Atmos Ocean Opt 35, 517–523 (2022). https://doi.org/10.1134/S1024856022050086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022050086

Keywords:

Navigation