Skip to main content
Log in

Spectral Analysis of Aqueous Aerosol by Femtosecond Pulse Laser-Induced Breakdown Method

  • OPTICAL WAVES PROPAGATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The results of analysis of aerosol in aqueous NaCl solution by the femtosecond-pulse laser-induced breakdown spectroscopy (FS-LIBS) method are considered. Estimates are presented for the impurity (Na) concentration by the analytical pair method using the additive method. We chose, as an internal standard line, the radiation of the atomic nitrogen ion N+ at a wavelength of 500.515 nm, formed from atmospheric nitrogen molecules in the filamentation domain. A possibility of estimating the concentration of a chemical compound (NaCl) from emission of its constituent part (Na) in aqueous aerosol by the FS-LIBS method is interesting for developing the femtosecond lidar sounding techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Mezheris, Remote Laser Sounding (Mir, Moscow, 1987) [in Russian].

  2. V. E. Zuev, A. A. Zemlyanov, and Yu. D. Kopytin, Nonlinear Atmospheric Optics (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  3. Yu. D. Kopytin, Yu. M. Sorokin, A. M. Skripkin, N. P. Belov, and V. I. Bukatyi, Optical Discharges in Aerosols (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  4. A. P. Godlevskii, Yu. D. Kopytin, V. V. Nosov, and A. F. Zhukov, USSR Patent No. 864966, Byull. Izobret., No. 5 (1980).

  5. F. Martin, R. Mawassi, F. Vidal, I. Gallimberti, D. Comtois, H. Pepin, J. C. Kieffer, and H. P. Mercure, “Spectroscopic study of ultrashort pulse laser-breakdown plasmas in air,” Appl. Spectros. 56 (11), 1444–1452 (2002).

    Article  ADS  Google Scholar 

  6. A. V. Afonasenko, A. N. Iglakova, G. G. Matvienko, V. K. Oshlakov, and V. E. Prokop’ev, “Laboratory and lidar measurements of birch leaves spectral characteristics in different periods of vegetation,” Opt. Atmos. Okeana 25 (3), 237–243 (2012).

    Google Scholar 

  7. A. N. Iglakova, G. G. Matvienko, V. K. Oshlakov, V. E. Prokop’ev, and V. I. Timofeev, “Molecular and trace element analysis of leaves of green plants,” Opt. Atmos. Okeana 26 (11), 969–973 (2013).

    Google Scholar 

  8. T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31 (1), 90–118 (2016).

    Article  Google Scholar 

  9. D. V. Apeksimov, P. A. Babushkin, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. V. Petrov, and V. M. Ryabtsev, “Study of the emission glow of solids and anthropogenic aerosols in the field of high-power femtosecond laser radiation during self-focusing in air for remote sensing of the atmosphere,” Atmos. Ocean. Opt. 34 (1), 6–13 (2021).

    Article  Google Scholar 

  10. P. A. Babushkin, G. G. Matvienko, V. K. Oshlakov, and A. Ya. Sukhanov, “Experimental estimation of aerosol particle sizes using the supercontinuum radiation and of the pattern of radiation from the femtosecond pulse filamentation domain,” Izv. Vysch. Ucheb. Zaved. Radiofiz. (2022) (in print).

  11. P. A. Babushkin, G. G. Matvienko, and V. K. Oshlakov, “Determination of the elemental composition of aerosol by femtosecond laser-induced breakdown spectroscopy,” Atmos. Ocean. Opt. 35 (1), 19–26 (2022).

    Article  Google Scholar 

  12. Yu. P. Raizer, Laser-Induced Spark and Radiation Propagation (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  13. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  14. www.nist.gov/pml/atomic-spectra-database. Cited April 5, 2022.

  15. V. E. Prokop’ev, N. G. Ivanov, D. A. Krivonosenko, and V. F. Losev, “Study of elementary physical processes in the filamentation domain and optical breakdown plasma during propagation of fs pulses of laser radiation at a wavelength of 950 nm through normal pressure air,” Izv. Vyssh. Ucheb. Zaved. Fiz. 56 (11), 60–65 (2013).

    Google Scholar 

  16. N. L. Glinka, Cloud Chemistry (Khimiya, Moscow, 1967) [in Russian].

    Google Scholar 

  17. A. I. Akimov, V. V. Lebedeva, and L. V. Levshin, Spectroscopy Manual (Moscow State University, Moscow, 1976) [in Russian].

    Google Scholar 

  18. A. A. Babushkin, P. A. Bazhulin, and F. A. Korolev, Spectral Analysis Techniques (Moscow State University, Moscow, 1962) [in Russian].

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences) under partly by the Russian Foundation for Basic Research (project no. 19-32-90188).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. A. Babushkin, G. G. Matvienko or V. K. Oshlakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babushkin, P.A., Matvienko, G.G. & Oshlakov, V.K. Spectral Analysis of Aqueous Aerosol by Femtosecond Pulse Laser-Induced Breakdown Method. Atmos Ocean Opt 35, 485–489 (2022). https://doi.org/10.1134/S1024856022050074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022050074

Keywords:

Navigation