Skip to main content
Log in

A Heuristic Approach to Defining the Structure Parameter of the Refractive Index of the Atmosphere from Turbulent Lidar Data

  • OPTICS OF STOCHASTICALLY-HETEROGENEOUS MEDIA
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Applicability of the existing theoretical approach to solving the inverse problem of retrieving optical turbulence parameters from lidar data is experimentally studied. It is shown that calculations by a theoretical formula relating the echo signal to the intensity of turbulent pulsations of the air refractive index for the case of statistically homogeneous medium satisfactorily agree with sounding data up to a numerical coefficient. For a specific size of the lidar aperture, a procedure for determining the coefficient in the Vorob’ev formula is recommended. Construction of a nomogram for determining the structure parameter \(C_{n}^{2}\) for homogeneous turbulence from lidar readings is proposed. It is established that the theory is inconsistent with results of the experiment when sounding inhomogeneous turbulence. It is shown that the section of the sounding path before the scattering volume makes the main contribution to the formation of the turbulent component of the echo signal due to the backscatter enhancement effect. It is proposed to define the structure parameter of optical turbulence \(C_{n}^{2}\) using an approximate formula where the normalized parameter \(C_{n}^{2}\) is directly proportional to the echo signal and inversely proportional to the integral determining the dispersion of radiation intensity fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. G. Vinogradov, A. S. Gurvich, S. S. Kashkarov, Yu. A. Kravtsov, and V. I. Tatarskii, Certificate on Discovery No. 359, Byull. Izobret., No. 21 (1989).

  2. A. G. Vinogradov, Yu. A. Kravtsov, and V. I. Tatarskii, “The effect of intensification of back scattering by bodies that are situated in a medium having random inhomogeneities,” Radiophys. Quantum Electron. b (7), 818–823 (1973).

  3. Yu. A. Kravtsov and A. I. Saichev, “Effects of double passage of waves in randomly inhomogeneous media,” Sov. Phys. Usp. 25 494–508 (1982).

    Article  ADS  Google Scholar 

  4. I. A. Razenkov, “Capabilities of a turbulent BSE-lidar for the study of the atmospheric boundary layer,” Atmos. Ocean. Opt. 34 (3), 229–238 (2021).

    Article  Google Scholar 

  5. A. S. Gurvich, “Lidar sounding of turbulence based on the backscatter enhancement effect,” Izv. Atmos. Ocean. Phys. 48 (6), 585–594 (2012).

    Article  Google Scholar 

  6. A. S. Gurvich, “Lidar positioning of higher clear-air turbulence regions,” Izv. Atmos. Ocean. Phys. 50 (2), 143–151 (2014).

    Article  Google Scholar 

  7. V. L. Afanasiev, A. S. Gurvich, and A. P. Rostov, “Experimental study of the backscatter enchancement effect in a turbulent atmosphere, in Abstracts of XVIII Intern. Symp. "Atmospheric and Oceanic Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2012), p. 95–99 [in Russian].

  8. I. A. Razenkov, “Turbulent lidar: I—Desing,” Atmos. Ocean. Opt. 31 (3), 273–280 (2018).

    Article  Google Scholar 

  9. I. A. Razenkov, “Turbulent lidar: II—Experiment,” Atmos. Ocean. Opt. 31 (3), 281–289 (2018).

    Article  Google Scholar 

  10. V. A. Banakh and I. A. Razenkov, “Lidar measurements of atmospheric backscattering amplification,” Opt. Spectrosc. 120 (2), 326–334 (2016).

    Article  ADS  Google Scholar 

  11. V. V. Vorob’ev, “On the applicability of asymptotic formulas of retrieving "optical” turbulence parameters from pulse lidar sounding data: I—Equations,” Atmos. Ocean. Opt. 30 (2), 156–161 (2017).

    Article  Google Scholar 

  12. V. V. Vorob’ev, “On the applicability of asymptotic formulas of retrieving "optical” turbulence parameters from pulse lidar sounding data: II—Results of numerical simulation,” Atmos. Ocean. Opt. 30 (2), 162–168 (2017).

    Article  Google Scholar 

  13. V. I. Tatarskii, Wave Propagation in Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  14. A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  15. I. A. Razenkov, “Optimization of parameters of a turbulent lidar,” Atmos. Ocean. Opt. 32 (3), 349–360 (2019).

    Article  Google Scholar 

  16. I. A. Razenkov, “Experimental estimation of the backscatter enhancement peak,” Atmos. Ocean. Opt. 34 (2), 111–116 (2021).

    Article  Google Scholar 

  17. I. A. Razenkov, V. A. Banakh, and E. V. Gorgeev, “Lidar "BSE-4" for the atmospheric turbulence measurements,” Proc. SPIE—Int. Soc. Opt. Eng. 10833. https://doi.org/10.1117/12.2505183

  18. I. A. Razenkov, “Estimation of the turbulence intensity from lidar data,” Atmos. Ocean. Opt. 33 (3), 245–253 (2020).

    Article  Google Scholar 

  19. I. A. Razenkov, “Specifics of sounding the atmospheric boundary layer with a turbulent lidar,” Atmos. Ocean. Opt. 33 (6), 610–615 (2020).

    Article  Google Scholar 

  20. http://mtp5.ru/pdf/mtp5h.compressed.pdf. Cited January 12, 2022.

  21. V. A. Gladkikh, V. P. Mamyshev, and S. L. Odintsov, “Experimental estimates of the structure parameter of the refractive index for optical waves in the surface air layer,” Atmos. Ocean. Opt. 28 (5), 426–435 (2015).

    Article  Google Scholar 

  22. N. P. Shakina, Hydrodynamic Instability in the Atmosphere (Gidrometeoizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 075-15-2021-934).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Razenkov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razenkov, I.A. A Heuristic Approach to Defining the Structure Parameter of the Refractive Index of the Atmosphere from Turbulent Lidar Data. Atmos Ocean Opt 35, 345–354 (2022). https://doi.org/10.1134/S1024856022040169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022040169

Keywords:

Navigation