Skip to main content
Log in

Smoke Plumes from Wildfires and the Electrical State of the Surface Air Layer

  • ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Using ground-based observation and satellite remote sensing data from 2006 to 2020 the smoke effect from distant wildfires in Siberia on the electrical state of the surface air layer is studied. The cases are considered where smoke covers the troposphere down to the surface layer and where smoke is observed only in the middle and upper troposphere. It is found that smoke from wildfires in these cases strongly but differently affects the electrical state of the surface air layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. Ya. Kondratyev and Al. A. Grigoryev, “Forest fires as a component of natural ecodynamics,” Atmos. Ocean. Opt. 17 (4), 245–255 (2004).

    Google Scholar 

  2. I. I. Mokhov, “Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies,” Izv. Atmos. Ocean. Phys. 47 (6), 653–660 (2011).

    Article  Google Scholar 

  3. Yu. A. Pkhalagov, V. N. Uzhegov, M. V. Panchenko, and I. I. Ippolitov, “Electro-optical interconnections in the atmosphere under smog conditions,” Atmos. Ocean. Opt. 19 (10), 774–777 (2018).

    Google Scholar 

  4. I. I. Ippolitov, M. V. Kabanov, P. M. Nagorskii, Yu. A. Pkhalagov, and S. V. Smirnov, “Daily variations in the electric field strength in smoke from wildfires,” Dokl. Akad. Nauk 453 (2), 207–210 (2013).

    Google Scholar 

  5. G. I. Gorchakov, S. A. Sitnov, A. V. Karpov, I. A. Gorchakova, R. A. Gushchin, and O. I. Datsenko, “Eurasian large-scale hazes in summer 2016,” Izv. Atmos. Ocean. Phys. 55 (3), 261–270 (2019).

    Article  Google Scholar 

  6. E. G. Semutnikova, G. I. Gorchakov, S. A. Sitnov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, T. Ya. Ponomareva, A. A. Isakov, R. A. Gushchin, O. I. Datsenko, G. A. Kurbatov, and G. A. Kuznetsov, “Siberian smoke haze over European territory of Russia in July 2016: Atmospheric pollution and radiative effects,” Atmos. Ocean. Opt. 31 (2), 171–180 (2018).

    Article  Google Scholar 

  7. I. B. Konovalov, M. Beekmann, E. V. Berezin, H. Petetin, T. Mielonen, I. N. Kuznetsova, and M. O. Andreae, “The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: A modeling case study of the 2010 mega-fire event in Russia,” Atmos. Chem. Phys. 15, 13 269–13 297 (2015).

    Article  Google Scholar 

  8. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics (Wiley Interscience, New York, 1998).

  9. A. V. Eliseev and A. V. Vasileva, “Natural fires: Observational data and modelling,” Fund. Prikl. Klimatol. 3, 73–119 (2020).

    Google Scholar 

  10. P. M. Nagorskiy, M. V. Kabanov, and K. N. Pustovalov, “The influence of smoke from forest fires on the meteorological and electrical characteristics of the atmosphere,” in Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks (IGI Global, 2020), P. 322–344.

    Google Scholar 

  11. K. N. Pustovalov, P. M. Nagorskiy, S. V. Smirnov, and M. V. Oglezneva, “The effect of smoke plumes from remote forest fires on the surface electric field,” Proc. SPIE—Int. Soc. Opt. Eng. 11560, 115606 (2020).

  12. I. M. Imyanitov and K. S. Shifrin, “Present state of research on atmospheric electricity,” Sov. Phys. Usp. 5, 292–322 (1962).

    Article  ADS  Google Scholar 

  13. Yu. A. Pkhalagov, V. N. Uzhegov, E. V. Ovcharenko, V. N. Genin, V. A. Donchenko, M. V. Kabanov, and N. N. Shchelkanov, “Study of correlation between aerosol extinction of optical radiation and atmospheric electric field strength,” Atmos. Ocean. Opt. 12 (2), 99–102 (1999).

    Google Scholar 

  14. Yu. A. Pkhalagov, I. I. Ippolitov, V. N. Uzhegov, A. V. Buldakov, and M. Yu. Arshinov, “Investigation of relation between UV radiation flux, electric field strength, and optical-microphysical characteristics of the atmospheric boundary layer,” Atmos. Ocean. Opt. 15 (4), 300–305 (2002).

    Google Scholar 

  15. Yu. A. Pkhalagov, V. N. Uzhegov, I. I. Ippolitov, and M. V. Vinarskii, “Investigation of relations between optical and electric characteristics of the surface atmosphere,” Atmos. Ocean. Opt. 18 (5-6), 373–377 (2005).

    Google Scholar 

  16. R. G. Harrison, “Aerosol-induced correlation between visibility and atmospheric electricity,” J. Aerosol Sci. 52, 121–126 (2012).

    Article  ADS  Google Scholar 

  17. V. Daskalopoulou, S. A. Mallios, Z. Ulanowski, G. Hloupis, A. Gialitaki, I. Tsikoudi, K. Tassis, and V. Amirides, “The electrical activity of Saharan dust as perceived from surface electric field observations,” Atmos. Chem. Phys. 21, 927–949 (2021).

    Article  ADS  Google Scholar 

  18. G. Franzese, F. Esposito, R. Lorenz, S. Silvestro, Popa C. Ionut, R. Molinaro, F. Cozzolino, C. Molfese, L. Marty, and N. Deniskina, “Electric properties of dust devils,” Earth Planet. Sci. Lett. 493, 71–81 (2018).

    Article  ADS  Google Scholar 

  19. P. P. Firstov, R. R. Akbashev, N. A. Zharinov, A. P. Maksimov, T. M. Manevich, and D. V. Mel’nikov, “Electrification of eruptive plumes discharged by Shiveluch volcano in relation to the character of the responsible explosion,” J. Volcanol. Seismol. 13 (3), 172–184 (2019).

    Article  Google Scholar 

  20. http://www.imces.ru/index.php?rm=news&action= view&id=899. Cited September 29, 2021.

  21. A. A. Azbukin, A. Ya. Bogushevich, V. A. Korol’kov, A. A. Tikhomirov, and V. D. Shelevoi, “A field version of the AMK-03 automated ultrasonic meteorological complex,” Rus. Meteorol. Hydrol. 34 (2), 133–136 (2009).

    Article  Google Scholar 

  22. http://meteo.ru/. Cited September 29, 2021.

  23. Wyoming Weather Web. Atmospheric Soundings. http://weather.uwyo.edu/upperair/sounding.html. Cited September 29, 2021.

  24. EOSDIS Worldview. https://worldview.earthdata.nasa. gov/. Cited September 29, 2021.

  25. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). https://www-calipso. larc.nasa.gov/. Cited September 29, 2021.

  26. S. V. Anisimov and N. M. Shikhova “Variability of the undisturbed aeroelectric field at the middle latitudes,” Geofiz. Issledovaniya 9 (3), 25–38 (2008).

    Google Scholar 

  27. V. N. Morozov and G. V. Kupovich, Theory of Electrical Phenomena in Atmosphere (LAP Lambert Academic Publishing, Saarbruken, 2012).

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch, Russian Academy of Sciences, assignment no. 121031300154-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. M. Nagorskiy, K. N. Pustovalov or S. V. Smirnov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagorskiy, P.M., Pustovalov, K.N. & Smirnov, S.V. Smoke Plumes from Wildfires and the Electrical State of the Surface Air Layer. Atmos Ocean Opt 35, 387–393 (2022). https://doi.org/10.1134/S1024856022040133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022040133

Keywords:

Navigation