Abstract
Using ground-based observation and satellite remote sensing data from 2006 to 2020 the smoke effect from distant wildfires in Siberia on the electrical state of the surface air layer is studied. The cases are considered where smoke covers the troposphere down to the surface layer and where smoke is observed only in the middle and upper troposphere. It is found that smoke from wildfires in these cases strongly but differently affects the electrical state of the surface air layer.
Similar content being viewed by others
REFERENCES
K. Ya. Kondratyev and Al. A. Grigoryev, “Forest fires as a component of natural ecodynamics,” Atmos. Ocean. Opt. 17 (4), 245–255 (2004).
I. I. Mokhov, “Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies,” Izv. Atmos. Ocean. Phys. 47 (6), 653–660 (2011).
Yu. A. Pkhalagov, V. N. Uzhegov, M. V. Panchenko, and I. I. Ippolitov, “Electro-optical interconnections in the atmosphere under smog conditions,” Atmos. Ocean. Opt. 19 (10), 774–777 (2018).
I. I. Ippolitov, M. V. Kabanov, P. M. Nagorskii, Yu. A. Pkhalagov, and S. V. Smirnov, “Daily variations in the electric field strength in smoke from wildfires,” Dokl. Akad. Nauk 453 (2), 207–210 (2013).
G. I. Gorchakov, S. A. Sitnov, A. V. Karpov, I. A. Gorchakova, R. A. Gushchin, and O. I. Datsenko, “Eurasian large-scale hazes in summer 2016,” Izv. Atmos. Ocean. Phys. 55 (3), 261–270 (2019).
E. G. Semutnikova, G. I. Gorchakov, S. A. Sitnov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, T. Ya. Ponomareva, A. A. Isakov, R. A. Gushchin, O. I. Datsenko, G. A. Kurbatov, and G. A. Kuznetsov, “Siberian smoke haze over European territory of Russia in July 2016: Atmospheric pollution and radiative effects,” Atmos. Ocean. Opt. 31 (2), 171–180 (2018).
I. B. Konovalov, M. Beekmann, E. V. Berezin, H. Petetin, T. Mielonen, I. N. Kuznetsova, and M. O. Andreae, “The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: A modeling case study of the 2010 mega-fire event in Russia,” Atmos. Chem. Phys. 15, 13 269–13 297 (2015).
J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics (Wiley Interscience, New York, 1998).
A. V. Eliseev and A. V. Vasileva, “Natural fires: Observational data and modelling,” Fund. Prikl. Klimatol. 3, 73–119 (2020).
P. M. Nagorskiy, M. V. Kabanov, and K. N. Pustovalov, “The influence of smoke from forest fires on the meteorological and electrical characteristics of the atmosphere,” in Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks (IGI Global, 2020), P. 322–344.
K. N. Pustovalov, P. M. Nagorskiy, S. V. Smirnov, and M. V. Oglezneva, “The effect of smoke plumes from remote forest fires on the surface electric field,” Proc. SPIE—Int. Soc. Opt. Eng. 11560, 115606 (2020).
I. M. Imyanitov and K. S. Shifrin, “Present state of research on atmospheric electricity,” Sov. Phys. Usp. 5, 292–322 (1962).
Yu. A. Pkhalagov, V. N. Uzhegov, E. V. Ovcharenko, V. N. Genin, V. A. Donchenko, M. V. Kabanov, and N. N. Shchelkanov, “Study of correlation between aerosol extinction of optical radiation and atmospheric electric field strength,” Atmos. Ocean. Opt. 12 (2), 99–102 (1999).
Yu. A. Pkhalagov, I. I. Ippolitov, V. N. Uzhegov, A. V. Buldakov, and M. Yu. Arshinov, “Investigation of relation between UV radiation flux, electric field strength, and optical-microphysical characteristics of the atmospheric boundary layer,” Atmos. Ocean. Opt. 15 (4), 300–305 (2002).
Yu. A. Pkhalagov, V. N. Uzhegov, I. I. Ippolitov, and M. V. Vinarskii, “Investigation of relations between optical and electric characteristics of the surface atmosphere,” Atmos. Ocean. Opt. 18 (5-6), 373–377 (2005).
R. G. Harrison, “Aerosol-induced correlation between visibility and atmospheric electricity,” J. Aerosol Sci. 52, 121–126 (2012).
V. Daskalopoulou, S. A. Mallios, Z. Ulanowski, G. Hloupis, A. Gialitaki, I. Tsikoudi, K. Tassis, and V. Amirides, “The electrical activity of Saharan dust as perceived from surface electric field observations,” Atmos. Chem. Phys. 21, 927–949 (2021).
G. Franzese, F. Esposito, R. Lorenz, S. Silvestro, Popa C. Ionut, R. Molinaro, F. Cozzolino, C. Molfese, L. Marty, and N. Deniskina, “Electric properties of dust devils,” Earth Planet. Sci. Lett. 493, 71–81 (2018).
P. P. Firstov, R. R. Akbashev, N. A. Zharinov, A. P. Maksimov, T. M. Manevich, and D. V. Mel’nikov, “Electrification of eruptive plumes discharged by Shiveluch volcano in relation to the character of the responsible explosion,” J. Volcanol. Seismol. 13 (3), 172–184 (2019).
http://www.imces.ru/index.php?rm=news&action= view&id=899. Cited September 29, 2021.
A. A. Azbukin, A. Ya. Bogushevich, V. A. Korol’kov, A. A. Tikhomirov, and V. D. Shelevoi, “A field version of the AMK-03 automated ultrasonic meteorological complex,” Rus. Meteorol. Hydrol. 34 (2), 133–136 (2009).
http://meteo.ru/. Cited September 29, 2021.
Wyoming Weather Web. Atmospheric Soundings. http://weather.uwyo.edu/upperair/sounding.html. Cited September 29, 2021.
EOSDIS Worldview. https://worldview.earthdata.nasa. gov/. Cited September 29, 2021.
The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). https://www-calipso. larc.nasa.gov/. Cited September 29, 2021.
S. V. Anisimov and N. M. Shikhova “Variability of the undisturbed aeroelectric field at the middle latitudes,” Geofiz. Issledovaniya 9 (3), 25–38 (2008).
V. N. Morozov and G. V. Kupovich, Theory of Electrical Phenomena in Atmosphere (LAP Lambert Academic Publishing, Saarbruken, 2012).
Funding
The work was supported by the Ministry of Science and Higher Education of the Russian Federation (Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch, Russian Academy of Sciences, assignment no. 121031300154-1).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declare that they have no conflicts of interest.
Rights and permissions
About this article
Cite this article
Nagorskiy, P.M., Pustovalov, K.N. & Smirnov, S.V. Smoke Plumes from Wildfires and the Electrical State of the Surface Air Layer. Atmos Ocean Opt 35, 387–393 (2022). https://doi.org/10.1134/S1024856022040133
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856022040133