Skip to main content
Log in

Development and Implementation of UV Absorption Gas Analysis Techniques for Ecological Monitoring of the Atmosphere

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Stationary nonlaser gas analyzers have been designed since the 1990s at the Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch, Russian Academy of Sciences, on the basis of the classical differential absorption method for monitoring the content of nitrogen and sulfur oxides in exhaust gases of thermal power plants, which burn natural gas, coal, and fuel oil. The operation of gas analyzers at Russian thermal power plants has shown their high sensitivity, reliability, and ease of maintenance. Based on the differential optical absorption spectroscopy and UV LEDs, a prototype of a portable energy-independent gas analyzer has been designed. It is an effective tool for simultaneous long-path measurements of concentrations of several atmospheric gases. An atomic absorption mercury analyzer has been created, where a capillary lamp with mercury of natural isotopic composition and the transverse Zeeman effect is used as a radiation source. A technique for detecting mercury in different media has been designed; the sensitivity of the analyzer is 14 ng/m3. Its applicability to multipurpose mercury monitoring is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. M. Nemets, A. A. Petrov, and A. A. Solov’ev, Spectral Analysis of Nonorganic Gases (Khimiya, Leningrad, 1988) [in Russian].

    Google Scholar 

  2. U. Platt and J. Stutz, Differential Optical Absorbtion Spectroscopy (Springer, Berlin, Heidelberg, 2008).

    Google Scholar 

  3. A. A. Ganeev, S. E. Sholupov, A. A. Pupyshev, A. A. Bol’shakov, and S. E. Pogarev, Atomic Absorption Spectroscopy (Lan’, St. Petersburg, 2011) [in Russian].

  4. I. I. Ippolitov, M. A. Buldakov, V. F. Zhilitskii, B. V. Korolev, V. V. Krainov, V. E. Lobetskii, S. A. Loboda, I. I. Matrosov, and S. V. Tigeev, “Gas analyzer for measuring nitrogen oxide in smoke gases,” Teploenergetika, No. 10, 63–65 (1994).

    Google Scholar 

  5. A. A. Azbukin, M. A. Buldakov, B. V. Korolev, V. A. Korol’kov, I. I. Matrosov, and A. A. Tikhomirov, “A stationary gas analyzer of nitric and sulfur oxides,” Instrum. Exp. Tech. 49 (6), 839–843 (2006).

    Article  Google Scholar 

  6. P. P. Geiko, S. S. Smirnov, and I. V. Samokhvalov, “Detection of concentration of small gas components of atmosphere by DOAS method,” Opt. Mem. Neural Netw. (Inf. Opt.) 24 (2), 152–158 (2015).

  7. C. Kern, S. Trick, B. Rippel, and U. Platt, “Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements,” Appl. Opt. 45 (9), 2077–2068 (2006).

    Article  ADS  Google Scholar 

  8. J. Stutz, S. Hurlock, S. Colosimo, C. Tsai, R. Cheung, J. Festa, O. Pikelnaya, S. Alvarez, J. Flynn, M. Erickson, and E. Olaguer, “A novel dual-LED based long-path DOAS instrument for the measurement of aromatic hydrocarbons,” Atmos. Environ. 147 (1), 121–132 (2016).

    Article  ADS  Google Scholar 

  9. F. Vita, C. Kern, and S. Inguaggiato, “Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements,” J. Sens. Syst. 3 (1), 355–367 (2014).

    Article  Google Scholar 

  10. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math 11 (2), 431–441 (1963).

    Article  MathSciNet  Google Scholar 

  11. P. P. Geiko, S. S. Smirnov, and I. V. Samokhvalov, “Long path detection of atmospheric pollutants by UV DOAS gas-analyzer,” Proc. SPIE—Int. Soc. Opt. Eng. 11208, 11120832T (2019).

  12. P. P. Geiko and S. S. Smirnov, “Implementation of the DOAS method for measuring concentrations of chlorine and bromine oxide molecules in the atmosphere in the UV region of the spectrum,” Rus. Phys. J. 63 (6), 1030–1036 (2020).

    Article  Google Scholar 

  13. E. L. Al’tman, G. B. Sveshnikov, Yu. I. Turkin, and S. E. Sholupov, “Zeeman atomic absorption spectroscopy,” Zh. Prikl. Spektroskop. 37 (5), 709–722 (1982).

    Google Scholar 

  14. A. B. Antipov, E. Yu. Genina, G. V. Kashkan, and N. G. Mel’nikov, “Mercury monitoring,” Atmos. Ocean. Opt. 7 (11-12), 886–889 (1994).

    Google Scholar 

  15. M. A. Buldakov, I. I. Matrosov, A. A. Tikhomirov, and B. V. Korolev, “Portative optical analyzer of mercury vapor in the atmospheric air DOG-05,” Bezopasnost Tekhnosfere, No. 1, 11–15 (2011).

    Google Scholar 

  16. A. I. Abramochkin, V. A. Korolkov, N. G. Mutnitsky, V. V. Tatur, and A. A. Tikhomirov, “Portable mercury gas analyzer with a lamp filled with natural mercury isotope mixture,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, 96803 (2015).

  17. A. I. Abramochkin, V. V. Tatur, and A. A. Tikhomirov, “Investigation of the π- and σ-components of mercury capillary lamp radiation in the presence transverse Zeeman effect,” Rus. Phys. J. 59 (9), 1343–1348 (2016).

    Article  Google Scholar 

  18. https://ktopoverit.ru/prof/opisanie/18795-09.pdf. Cited March 10, 2021.

Download references

Funding

This work was partially supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 121031300154-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. P. Geiko, V. A. Korolkov or V. V. Tatur.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geiko, P.P., Korolkov, V.A. & Tatur, V.V. Development and Implementation of UV Absorption Gas Analysis Techniques for Ecological Monitoring of the Atmosphere. Atmos Ocean Opt 35, 443–449 (2022). https://doi.org/10.1134/S1024856022040030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022040030

Keywords:

Navigation