Skip to main content
Log in

Superposition of Two Converging and Diverging Coaxial Hypergeometric Beams

  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The diffraction of elegant vortex hypergeometric (HyG) laser beams with a parabolic initial wavefront in a homogeneous medium is considered. While HyG beams have a central amplitude singularity in the initial plane and are of infinite energy, the superposition of two such beams has no singularity and is of finite energy. A particular case of this superposition, i.e., a sinusoidal Gaussian beam with a unit topological charge, is studied in detail. This beam belongs to the class of elegant laser beams since it is described by the same complex-argument function both in the initial plane and in the Fresnel diffraction zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. V. V. Kotlyar, R. V. Skidanov, S. N. Khonina, and V. A. Soifer, “Hypergeometric modes,” Opt. Lett. 32, 742–744 (2007).

    Article  ADS  Google Scholar 

  2. E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato, “Hypergeometric-Gaussian modes,” Opt. Lett. 32, 3053–3055 (2007).

    Article  ADS  Google Scholar 

  3. V. V. Kotlyar and A. A. Kovalev, “Family of hypergeometric laser beams,” J. Opt. Soc. Amer. A 25, 262–270 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, “Improved focusing with hypergeometric-Gaussian type-II optical modes,” Opt. Express 16, 21069–21075 (2008).

    Article  ADS  Google Scholar 

  5. V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, S. N. Khonina, and J. Turune, “Generating hypergeometric laser beams with a diffractive optical elements,” Appl. Opt. 47 (32), 6124–6133 (2008).

    Article  ADS  Google Scholar 

  6. S. N. Khonina, S. A. Balalaev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hypergeometric laser beams,” J. Opt. A: Pure Appl. Opt. 11 (6), 065702 (2009).

    Article  ADS  Google Scholar 

  7. V. V. Kotlyar and A. A. Kovalev, “Nonparaxial hypergeometric beams,” J. Opt. A 11, 045711 (2009).

    Article  ADS  Google Scholar 

  8. V. V. Kotlyar, A. A. Kovalev, and V. A. Soifer, “Lensless focusing of hypergeometric laser beams,” J. Opt. 13, 075703 (2011).

    Article  ADS  Google Scholar 

  9. Bernardo B. De Lima and F. Moraes, “Data transmission by hypergeometric modes through a hyperbolic-index medium,” Opt. Express 19, 11264–11270 (2011).

    Article  ADS  Google Scholar 

  10. B. Tang, C. Jiang, and H. Zhu, “Fractional Fourier transform for confluent hypergeometric beams,” Phys. Lett. A 376, 2627–2631 (2012).

    Article  ADS  Google Scholar 

  11. J. Li and Y. Chen, “Propagation of confluent hypergeometric beam through uniaxial crystals orthogonal to the optical axis,” Opt. Laser Technol. 44, 1603–1610 (2012).

    Article  ADS  Google Scholar 

  12. V. V. Kotlyar, A. A. Kovalev, and A. G. Nalimov, “Propagation of hypergeometric laser beams in a medium with a parabolic refractive index,” J. Opt. 15, 125706 (2013).

    Article  ADS  Google Scholar 

  13. L. Bian and B. Tang, “Propagation properties of hypergeometric-Gaussian type-II beams through the quadratic-index medium,” Appl. Opt. 57 (17), 4735–4742 (2018).

    Article  ADS  Google Scholar 

  14. T. Bin, J. Chun, Z. Haibin, Z. Xin, and W. Shuai, “The propagation of hypergeometric beams through an annular apertured paraxial ABCD optical system,” Laser Phys. 24, 125002 (2014).

    Article  Google Scholar 

  15. J. Peng, Z. Shan, Y. Yuan, Z. Cui, W. Huang, and J. Qu, “Focusing properties of hypergeometric Gaussian beam through a high numerical-aperture objective,” Prog. Electromagn. Res. 51, 21–26 (2015).

    Article  Google Scholar 

  16. Y. Zhu, L. Zhang, Z. Hu, and Y. Zhang, “Effects of non-Kolmogorov turbulence on the spiral spectrum of hypergeometric-Gaussian laser beams,” Opt. Express 23, 9137–9146 (2015).

    Article  ADS  Google Scholar 

  17. X. Wang, L. Wang, B. Zheng, Z. Yang, and S. Zhao, “Effects of oceanic turbulence on the propagation of hypergeometric-Gaussian beam carrying orbital angular momentum,” in Proc. of the 2020 IEEE International Conference on Communications Workshops, Dublin, Ireland, June 7–11, 2020 (IEEE, 2020).

  18. X. Wang, L. Wang, and S. Zhao, “Research on hypergeometric-Gaussian vortex beam propagating under oceanic turbulence by theoretical derivation and numerical simulation,” J. Mar. Sci. Eng. 9, 442 (2021).

    Article  Google Scholar 

  19. L. Bian and B. Tang, “Evolution properties of hypergeometric-Gaussian type-II beams in strongly nonlocal nonlinear media,” J. Opt. Soc. Am. B 35, 1362–1367 (2018).

    Article  ADS  Google Scholar 

  20. T. Bin, B. Lirong, Z. Xin, and C. Kai, “Propagation of hypergeometric Gaussian beams in strongly nonlocal nonlinear media,” Laser Phys. 28, 015001 (2018).

    Article  Google Scholar 

  21. A. A. Kovalev, V. V. Kotlyar, and A. P. Porfirev, “Auto-focusing accelerating hyper-geometric laser beams,” J. Opt. 18, 025610 (2016).

    ADS  Google Scholar 

  22. Y. Zhu, Y. Zhang, and G. Yang, “Evolution of orbital angular momentum mode of the autofocusing hypergeometric-Gaussian beams through moderate-to-strong anisotropic non-kolmogorov turbulence,” Opt. Commun. 405, 66–72 (2017).

    Article  ADS  Google Scholar 

  23. A. A. A. Ebrahim, F. Saad, and L. Ez-zariy, “Theoretical conversion of the hypergeometric-Gaussian beams family into a high-order spiraling bessel beams by a curved fork-shaped hologram,” Opt. Quantum Electron. 49, 169 (2017).

    Article  Google Scholar 

  24. G. Jin, L. Bian, L. Huang, and B. Tany, “Radiation forces of hypergeometric-Gaussian type-II beams acting on a Rayleigh dielectric sphere,” Opt. Las. Techn. 126, 106124 (2020).

    Article  Google Scholar 

  25. V. V. Kotlyar, A. A. Kovalev, and E. G. Abramochkin, “Kummer laser beams with a transverse complex shift,” J. Opt. 22 (2020).

  26. R. L. Phillips and L. C. Andrews, “Spot size and divergence for Laguerre–Gaussian beams of any order,” Appl. Opt. 22 (1983).

Download references

Funding

This work was financially supported by the Russian Science Foundation (grant no. 22-22-00265, Sections “Hypergeometric beam with parabolic initial wavefront” and “Linear combination of hypergeometric beams”, and grant no. 18-19-00595, Section “Elegant sinusoidal Gaussian beam with unit topological charge”) and by the Ministry of Science and Higher Education of the Russian Federation under a government project of the FSRC “Crystallography and Photonics” RAS (Section “Numerical simulation”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Kotlyar, A. A. Kovalev or A. G. Nalimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotlyar, V.V., Kovalev, A.A. & Nalimov, A.G. Superposition of Two Converging and Diverging Coaxial Hypergeometric Beams. Atmos Ocean Opt 35, 212–217 (2022). https://doi.org/10.1134/S1024856022030071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022030071

Keywords:

Navigation