Skip to main content
Log in

Comparative Measurements of Atmospheric Turbulence Parameters by Optical Methods

  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Different methods for measuring random wavefront tilts are considered. Possibilities of measuring the Fried parameter by the differential method in problems of turbulence sensing and adaptive optics are determined. Comparative measurements of the turbulence strength along a horizontal path were carried out by two optical methods: (1) with a differential turbulence meter and (2) passive method based on image jitter measurements with a high-speed digital video camera mounted on a small astronomical telescope and real-time processing algorithms. Possible differences in the measurement results are discussed. Patterns of the evolution of the convective motion of a medium inside a volume in terms of the vector velocity field and scalar temperature and pressure fields are derived on the basis of numerical solution of the set of Navier–Stokes equations. Ways of improving a wavefront sensor for high-precision phase measurements in both Kolmogorov and non-Kolmogorov turbulence are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. I. Tatarskii, “Adaptive systems and coherence. I and II,” Radiophys. Quantum Electron. 24 (7), 590–607 (1981).

    Article  ADS  Google Scholar 

  2. A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  3. A. S. Gurvich and M. A. Kalistratova, “Experimental study of the fluctuations in angle of incidence of a light beam under conditions of strong intensity fluctuations,” Radiophys. Quantum Electron. 11 (1), 37–40 (1968).

    Article  ADS  Google Scholar 

  4. V. L. Mironov and V. V. Nosov, “Random image displacements at a telescope focus located in a turbulent atmosphere,” Radiophys. Quantum Electron. 20 (10), 1530–1533 (1977).

    Article  Google Scholar 

  5. D. Frid, “Heterodyne reception of optical signals under wavefront atmospheric distortions,” TIIER, No. 1, 62–72 (1967).

    Google Scholar 

  6. E. I. Gel’fer, A. I. Kon, and A. N. Cheremukhin, “Correlation of the shift of the center of gravity of a focused light beam in a turbulent atmosphere,” Radiophys. Quantum Electron. 16 (2), 182–187 (1973).

    Article  ADS  Google Scholar 

  7. A. I. Kon, V. L. Mironov, and V. V. Nosov, “Fluctuations of the centers of gravity of light beams in a turbulent atmosphere,” Radiophys. Quantum Electron. 17 (10), 1501–1511 (1974).

    Article  Google Scholar 

  8. V. P. Lukin, Atmospheric Adaptive Optics (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  9. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66 (3), 207–211 (1976).

    Article  ADS  Google Scholar 

  10. V. P. Lukin and O. N. Emaleev, “Correction of angular displacements of optical beams,” Sov. J. Quantum Electron. 12 (11), 1470–1474 (1982).

    Article  ADS  Google Scholar 

  11. S. M. Slobodyan, V. N. Galakhov, and V. M. Sazanovich, “Decide for measuring angular fluctuations of optical beams,” Pribory Tekhnika Exp. 27 (9), 192–194 (1980).

    Google Scholar 

  12. Yu. A. Kravtsov and A. I. Saichev, “Effects of double passage of waves in randomly inhomogeneous media,” Phys.-Uspekhi 137 (3), 501–521 (1982).

    Google Scholar 

  13. D. A. LeMaster, R. C. Hardie, S. Gladysz, M. D. Howard, M. A. Rucci, M. E. Trippel, J. D. Power, and B. K. Karch, “Differential tilt variance effects of turbulence in imagery: Comparing simulation with theory,” Proc. SPIE—Int. Soc. Opt. Eng. 9846 (2016).https://doi.org/10.1117/12.2223470

  14. S. Gladysz, M. Segel, C. Eisele, R. Barros, and E. Sucher, “Estimation of turbulence strength, anisotropy, outer scale and spectral slope from an LED array,” Proc. SPIE—Int. Soc. Opt. Eng. 9614 ((4), 961402 (2015).https://doi.org/10.1117/12.2191287

  15. J. D. Power, D. A. LeMaster, D. R. Droege, S. Gladysz, and S. Bose-Pillai, “Simulation of anisoplanatic imaging through optical turbulence using numerical wave propagation with new validation analysis,” Opt. Eng. 56 (7), 071502 (2017).

    ADS  Google Scholar 

  16. S. Gladysz, “Absolute and differential G-tilt in turbulence: Theory and applications,” Proc. SPIE—Int. Soc. Opt. Eng. 10002, 100020 (2016).

  17. S. Gladysz, G. Filimonov, and V. Kolosov, “Validation of tilt anisoplanatism models through simulation,” Imag. Appl. Opt. (2018). https://doi.org/10.1364/PCAOP.2018.PW3H.2

  18. A. Tokovinin, “From differential image motion to seeing,” Publ. Astron. Soc. Pac. 114, 1156–1166 (2002).

    Article  ADS  Google Scholar 

  19. M. Sarazin and F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).

    ADS  Google Scholar 

  20. L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, V. P. Lukin, and L. N. Lavrinova, “Differential optical meter of the parameters of atmospheric turbulence,” Atmos. Ocean. Opt. 11 (11), 1046–1050 (1998).

    Google Scholar 

  21. L. A. Bolbasova, A. N. Gritsuta, E. A. Kopylov, V. V. Lavrinov, V. P. Lukin, A. A. Selin, and E. L. Soin, “Atmospheric turbulence meter based on a Shack–Hartmann wavefront sensor,” J. Opt. Technol. 86 (7), 426–430 (2019).

    Article  Google Scholar 

  22. V. P. Lukin and V. V. Nosov, “Measurement of an image jitter of an extended incoherent radiation source,” Quantum Electron. 47 (6), 580–588 (2017).

    Article  ADS  Google Scholar 

  23. P. A. Konyaev, N. N. Botygina, L. V. Antoshkin, O. N. Emaleev, and V. P. Lukin, “Passive optical methods in measurement of the structure parameter of the air refractive index,” Atmos. Ocean. Opt. 28 (6), 522–525 (2015).

  24. I. Toselli, L. C. Andrews, and R. L. Phillips, “Free space optical system performance for laser beam propagation through non Kolmogorov turbulence,” Proc. SPIE—Int. Soc. Opt. Eng. 6457 (2007).https://doi.org/10.1117/12.698707

  25. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation in non Kolmogorov turbulence,” Proc. SPIE—Int. Soc. Opt. Eng. 6551 (2007).https://doi.org/10.1117/12.719033

  26. A. Zilberman, E. Golbraikh, and N. S. Kopeika, “Lidar studies of aerosol and non Kolmogorov turbulence in the Mediterranean troposphere,” Proc. SPIE—Int. Soc. Opt. Eng. 5987 (2005).https://doi.org/10.1117/12.629687

  27. M. I. Charnotskii, “Wave propagation in random media with spectral exponent outside the (3, 4) range,” in Workshop on Non-Kolmogorov Turbulence and Associated Phenomena (IOSB, Ettlingen, 2019).

  28. L. Cui, B. Xue, and F. Zhou, “Generalized anisotropic turbulence spectra and application in the optical waves propagation through anisotropic turbulence,” Opt. Express 23, 30088–30103 (2015).

    Article  ADS  Google Scholar 

  29. O. Korotkova and I. Toselli, “Non-classic atmospheric optical turbulence: Review,” Appl. Sci. 11, 8487 (2021).

    Article  Google Scholar 

  30. V. P. Lukin, L. A. Bol’basova, and V. V. Nosov, “Comparison of Kolmogorov’s and coherent turbulence,” Appl. Opt. 53, B231–B236 (2014).

    Article  Google Scholar 

  31. V. P. Lukin, E. V. Nosov, V. V. Nosov, and A. V. Torgaev, “Causes of non-Kolmogorov turbulence in the atmosphere,” Appl. Opt. 55, B163–B168 (2016).

    Article  Google Scholar 

  32. V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Simulation of coherent structures (topological solitons) inside closed rooms by solving numerically hydrodynamic equations,” Optika Atmos. Okeana 28 (2), 120–133 (2015).

    Google Scholar 

  33. V. P. Lukin, N. N. Botygina, O. N. Emaleev, and V. V. Lavrinov, “Peculiarities of adaptive phase correction of optical wave distortions under conditions of 'strong' intensity fluctuations,” Quantum Electron. 50 (9), 866–875 (2020).

    Article  ADS  Google Scholar 

  34. V. P. Lukin, V. V. Nosov, E. V. Nosov, and A. V. Torgaev, “Influence of atmospheric turbulence scale,” Uspekhi Sovremennogo Estestvoznaniya, No. 1–7, 1179–1183 (2015).

  35. V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Method for atmospheric turbulence profile measurement from observation of laser guide stars,” Atmos. Ocean. Opt. 30 (2), 176–183 (2017).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 22-22-00289).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. A. Konyaev or V. P. Lukin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konyaev, P.A., Lukin, V.P., Nosov, V.V. et al. Comparative Measurements of Atmospheric Turbulence Parameters by Optical Methods. Atmos Ocean Opt 35, 310–318 (2022). https://doi.org/10.1134/S102485602203006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602203006X

Keywords:

Navigation