Skip to main content
Log in

Analysis of Dynamics of Atmospheric Discharges Using Data on Cylindrically and Spherically Shaped Streamers

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The sequence of occurrences of different atmospheric discharges (lightning, elve, and blue jet) shown on video recorded onboard the International Space Station is analyzed. Experimental data on the formation of diffuse, corona, and apokampic discharges, with participation of cylindrical and spherical streamers, are employed for a comparison. The elve formation is conjectured to be initiated by extensive discharges in clouds with the subsequent formation of lightning short-circuited to the ground in this area. In this case, the lightning reaches the positively charged upper cloud layer. The dense plasma of the upper part of the lightning initiates the development of a blue jet, consisting of cylindrical streamers of the ionization wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. T. Neubert, O. Chanrion, M. Heumesser, K. Dimitriadou, L. Husbjerg, I. L. Rasmussen, N. Ostgaard, and V. Reglero, “Observation of the onset of a blue jet into the stratosphere,” Nature 589 (7842), 371–375 (2021).

    Article  ADS  Google Scholar 

  2. O. Chanrion, T. Neubert, A. Mogensen, Y. Yair, M. Stendel, R. Singh, and D. Siingh, “Profuse activity of blue electrical discharges at the tops of thunderstorms,” Geophys. Rev. Lett. 44, 496–503 (2017).

    Article  ADS  Google Scholar 

  3. S. Qiu, N. Wang, W. Soon, G. Lu, M. Jia, X. Wang, X. Xue, T. Li, and X. Dou, “The sporadic sodium layer: A possible tracer for the conjunction between the upper and lower atmospheres,” Atmos. Chem. Phys. 21 (15), 11927–11940 (2021).

    Article  ADS  Google Scholar 

  4. V. A. Donchenko, M. V. Kabanov, B. V. Kaul’, P. M. Nagorskii, and I. V. Samokhvalov, Electrooptical Phenomena in the Atmosphere (NTL, Tomsk, 2015) [in Russian].

    Google Scholar 

  5. https://youtu.be/4VR3yBlKsFM. Cited October 18, 2021.

  6. D. Siingh, R. P. Singh, S. Kumar, T. Dharmaraj, A. K. Singh, M. N. Patil, and Sh. Singh, “Lightning and middle atmospheric discharges in the atmosphere,” J. Atmos. Sol.-Terr. Phys. 134, 78–101 (2015).

    Article  ADS  Google Scholar 

  7. www.uib.no/en/rg/space/56207/asim-research. Cited October 18, 2021.

  8. V. F. Tarasenko, G. V. Naidis, D. V. Beloplotov, I. D. Kostyrya, and N. Y. Babaeva, “Formation of wide streamers during a subnanosecond discharge in atmospheric-pressure air,” Plasma Phys. Rep. 44 (8), 746–753 (2018).

    Article  ADS  Google Scholar 

  9. V. F. Tarasenko, V. S. Kuznetsov, E. Kh. Baksht, V. A. Panarin, V. S. Skakun, and E. A. Sosnin, “Formation of ball and cylindrical streamers during corona discharge in air at atmospheric pressure,” Opt. Atmos. Okeana 33 (11), 897–904 (2020). https://doi.org/10.15372/AOO20201111

    Article  Google Scholar 

  10. V. F. Tarasenko, E. A. Sosnin, V. S. Skakun, V. A. Panarin, M. V. Trigub, and G. S. Evtushenko, “Dynamics of apokamp type atmospheric pressure plasma jets initiated in air by a repetitive pulsed discharge,” Phys. Plasmas 24 (4), 043514 (2017).

    Article  ADS  Google Scholar 

  11. U. Ebert and D. D. Sentman, “Streamers, sprites, leaders, lightning: From micro- to macroscales,” J. Phys. D: Appl. Phys. 41 (23), 230301 (2008).

    Article  ADS  Google Scholar 

  12. E. M. Bazelyan and Yu. P. Raizer, Physics of Lightning and Lightning Protection (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  13. Yu. P. Raizer, Gas Discharge Physics (Intellekt, Moscow, 2009) [Russian].

    Google Scholar 

  14. M. Heumesser, O. Chanrion, T. Neubert, H. J. Christian, K. Dimitriadou, F. J. Gordillo-Vazquez, A. Luque, F. J. Perez-Invernon, R. J. Blakeslee, N. Ostgaard, and V. Reglero, “Spectral observations of optical emissions associated with terrestrial gamma-ray flashes,” Geophys. Rev. Lett. 48 (4), GL090700 (2021).

    Article  Google Scholar 

  15. V. F. Tarasenko, V. S. Kuznetsov, V. A. Panarin, V. S. Skakun, E. A. Sosnin, and E. K. Baksht, “Role of streamers in the formation of a corona discharge in a highly no nuniform electric field,” JETP Lett. 110 (1), 85–89 (2019).

    Article  ADS  Google Scholar 

  16. D. V. Rybka, I. V. Andronikov, G. S. Evtushenko, A. V. Kozyrev, V. Yu. Kozhevnikov, I. D. Kostyrya, V. F. Tarasenko, M. V. Trigub, and Yu. V. Shut’ko, “Corona discharge in atmospheric pressure air under a modulated voltage pulse of 10 ms,” Atmos. Ocean. Opt. 26 (5), 449–454 (2013).

    Article  Google Scholar 

  17. E. A. Sosnin, N. Y. Babaeva, V. Y. Kozhevnikov, A. V. Kozyrev, G. V. Naidis, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, “Modeling of transient luminous events in Earth’s middle atmosphere with apokamp discharge,” Phys.-Uspekhi 64 (2), 191–210 (2021).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks the personnel of the laboratory of optical radiation of the Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, for collaborative work in research into gas discharges in a nonuniform electric field.

Funding

This research was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1026 of November 15, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenko, V.F. Analysis of Dynamics of Atmospheric Discharges Using Data on Cylindrically and Spherically Shaped Streamers. Atmos Ocean Opt 35, 164–167 (2022). https://doi.org/10.1134/S1024856022020154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022020154

Keywords:

Navigation