Skip to main content
Log in

Light Backscattering Properties of Distorted Hexagonal Atmospheric Ice Particles within the Physical Optics Approximation

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Light backscattering matrices are calculated within the physical optics approximation for hexagonal atmospheric ice particles distorted in different ways for the case of arbitrary spatial orientation and single scattering. A hexagonal prism with a height of 31.62 μm and an external diameter of 22.14 μm, which is typical for “column”-type particles observed in cirrus clouds, is chosen as a basic geometric shape. Three shape distortion methods for the particles are used: tilt, convexity and concavity; the angle of distortion varies from 0° to 50° for every particle type. The wavelength of incident radiation is 1.064 μm. The calculation has shown a sharp decrease in the backscattering cross section with an increase in the angle of distortion for all particle types under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: A global perspective,” Mon. Wea. Rev. 114 (6), 1167–1199 (1986).

    Article  ADS  Google Scholar 

  2. Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I. Single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46 (1), 3–19 (1989).

    Article  ADS  Google Scholar 

  3. K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58 (15), 2103–2112 (2001).

    Article  ADS  Google Scholar 

  4. B. V. Kaul’, S. N. Volkov, and I. V. Samokhvalov, “Studies of ice crystal clouds through lidar measurements of backscattering matrices,” Atmos. Ocean. Opt. 16 (4), 325–332 (2003).

    Google Scholar 

  5. ftp://ftp.iao.ru/pub/GWDT/. Cited November 12, 2021.

  6. V. A. Shishko, I. D. Bryukhanov, E. V. Nie, N. V. Kustova, D. N. Timofeev, and A. V. Konoshonkin, “Algorithm for interpreting light backscattering matrices of cirrus clouds for the retrieval of their microphysical parameters,” Atmos. Ocean. Opt. 32 (4), 393–399 (2019).

    Article  Google Scholar 

  7. K. S. Kunz and R. J. Luebbers, Finite Difference Time Domain Method for Electromagnetics (FL CRC Press, Boca Raton, FL, 1993).

    Google Scholar 

  8. P. Yang, L. Bi, G. Kattawar, and R. L. Panetta, “Optical properties of nonspherical atmospheric particles and relevant applications,” AAPP Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali 89 (2011). https://doi.org/10.1478/C1V89S1P012

  9. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

    Article  ADS  Google Scholar 

  10. Y. Grynko, Y. Shkuratov, and J. Forstner, “Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness,” Opt. Lett. 41 (15), 3491 (2016).

    Article  ADS  Google Scholar 

  11. M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).

    Article  ADS  Google Scholar 

  12. H. Jacobowitz, “A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 11 (6), 691–695 (1971).

    Article  ADS  Google Scholar 

  13. A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystal,” J. Atmos. Sci. 53 (19), 2813–2825 (1996).

    Article  ADS  Google Scholar 

  14. A. G. Borovoi and I. A. Grishin, “Scattering matrices for large ice crystal particles,” J. Opt. Soc. Am. A 20, 2071–2080 (2003).

    Article  ADS  Google Scholar 

  15. A. Borovoi, A. Konoshonkin, and N. Kustova, “The physics optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014).

    Article  ADS  Google Scholar 

  16. A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Peculiarities of the depolarization ratio in lidar signals for randomly oriented ice crystals of cirrus clouds,” Opt. Atmos. Okeana 26 (5), 385–387 (2013).

    Google Scholar 

  17. A. Konoshonkin, Z. Wang, A. Borovoi, N. Kustova, D. Liu, and C. Xie, “Backscatter by azimuthally oriented ice crystals of cirrus clouds,” Opt. Express 24 (18), A1257–A1268 (2016).

    Article  ADS  Google Scholar 

  18. D. N. Timofeev, A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, and A. G. Borovoi, “Estimation of the absorption effect on light scattering by atmospheric ice crystals for wavelengths typical for problems of laser sounding of the atmosphere,” Atmos. Ocean. Opt. 32 (5), 564–568 (2019).

    Article  Google Scholar 

  19. L. Bi and P. Yang, “Physical-geometric optics hybrid methods for computing the scattering and absorption properties of ice crystals and dust aerosols,” in Light Scattering Reviews 8 (Springer, Berlin; Heidelberg, 2013).

    Google Scholar 

  20. C. Zhou and P. Yang, “Backscattering peak of ice cloud particles,” Opt. Express 23, 11995–12003 (2015).

    Article  ADS  Google Scholar 

  21. A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38 (15), 2881–1884 (2013).

    Article  ADS  Google Scholar 

  22. J. Um, G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo, “Dimensions and aspect ratios of natural ice crystals,” Atmos. Chem. Phys. 15, 3933–3956 (2015).

    Article  ADS  Google Scholar 

  23. P. Yang, P. Stegmann, G. Tang, S. Hioki, and J. Ding, “Improving scattering, absorption, polarization properties of snow, graupel, and ice aggregate particles from solar to microwave wavelengths in support of the CRTM,” JCSDA quarterly, No. 59, 8–14 (2018).

  24. A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm,” Atmos. Ocean. Opt. 28 (5), 441–447 (2015).

    Article  Google Scholar 

  25. A. Konoshonkin, A. Borovoi, N. Kustova, and J. Reichardt, “Power laws for backscattering by ice crystals of cirrus clouds,” Opt. Express 25, 22341–22346 (2017).

    Article  ADS  Google Scholar 

  26. W.-N. Chen, C.-W. Chiang, and J.-B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41, 6470–6476 (2002).

    Article  ADS  Google Scholar 

  27. N. V. Kustova, A. G. Borovoi, A. V. Konoshonkin, and I. A. Veselovskii, “Appearance of the corner reflection effect in cirrus clouds for off-zenith lidar profiling,” Proc. SPIE—Int. Soc. Opt. Eng., 1083346 (2018).

  28. M. Del Guasta, “Simulation of LIDAR returns from pristine and deformed hexagonal ice prisms in cold cirrus by means of "face tracing”," J. Geophys. Res. Atmos. 106, 12 589–12 602 (2001).

    Article  ADS  Google Scholar 

  29. V. A. Shishko, A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Main types of optical beams giving predominant contributions to the light backscatter for the irregular hexagonal columns,” Proc. SPIE—Int. Soc. Opt. Eng., 1046646 (2017).

  30. D. L. Mitchell and W. P. Arnott, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II. Radiation,” J. Atmos. Sci. 51, 817–832 (1994).

    Article  ADS  Google Scholar 

  31. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).

    Article  ADS  Google Scholar 

  32. 13. A. V. Konoshonkin, A. G. Borovoi, N. V. Kustova, V. A. Shishko, and D. N. Timofeev, Light Scattering by Atmospheric Ice Crystals in the Physical Optics Approximation (Publishing House of SB RAS, Novosibirsk, 2020) [in Russian].

Download references

Funding

The calculations of light backscattering matrices for particles of the hollow column type were supported by the Russian Science Foundation (grant no. 21-77-10089). Calculations of the light backscattering matrices for particles of the double bullet type were supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences). Calculations of light backscattering matrices for particles of the oblique column type were supported by the President of the Russian Federation (grant no. MD-3149.2022.1.5). Averaging over the particle distortion angle was supported by Russian Foundation for Basic Research (grant no. 21-55-53027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. N. Timofeev, A. V. Konoshonkin, N. V. Kustova or V. A. Shishko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeev, D.N., Konoshonkin, A.V., Kustova, N.V. et al. Light Backscattering Properties of Distorted Hexagonal Atmospheric Ice Particles within the Physical Optics Approximation. Atmos Ocean Opt 35, 158–163 (2022). https://doi.org/10.1134/S1024856022020130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022020130

Keywords:

Navigation