Skip to main content
Log in

Statistical Analysis of the Water Vapor Content in North Caucasus and Crimea

  • ADAPTIVE AND INTEGRAL OPTICS
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Results of studying the precipitable water vapor content in the atmosphere column for Terskol Peak (the Elbrus region), Kislovodsk city, Nauchny settlement (Crimea), Shaki city (Azerbaijan), and Khunzakh settlement (Dagestan) are presented. The comparative analysis of variations in the precipitable water vapor content estimated by data of measurements at GNSS stations and ERA-5 reanalysis is performed. Using the ERA-5 reanalysis makes it possible to reveal new sites promising for location of millimeter/submillimeter telescopes. With allowance for the comparatively low total cloud cover, Rutul and Agul raions of mountainous Dagestan (Mt. Khorai (3521 m) and Mt. Karakh (2876 m) with surroundings, as well as Mt. Sindaku (2849 m) with surroundings) are most promising sites for the location of the Russian millimeter/submillimeter telescope in North Caucasus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. Marchiori, F. Rampini, M. Tordi, M. Spinola, and R. Bressan, “Towards the Eurasian Submillimeter Telescope (ESMT): Telescope concept outline and first results,” Proc. of All Russian Conference “Ground-Based Astronomy in Russia. 21st Century,” Nizhny Arkhyz, Russia, September 21–25, 2020. P. 378–383. https://doi.org/10.26119/978-5-6045062-0-2_2020_378

  2. V. Khaikin, M. Lebedev, V. Shmagin, I. Zinchenko, V. Vdovin, G. Bubnov, V. Edelman, G. Yakopov, A. Shikhovtsev, G. Marchiori, M. Tordi, R. Duan, and D. Li, “On the Eurasian SubMillimeter Telescopes Project (ESMT),” in Proc. of the 7th All Russian Microwave Conference (RMC) (Russia, Moscow, 2020), p. 47–51. https://doi.org/10.1109/RMC50626.2020.9312233

  3. R. Duan, V. Khaikin, M. Lebedev, V. Shmagin, G. Yakopov, V. Vdovin, G. Bubnov, X. Zhang, C. Niu, D. Li, and I. Zinchenko, “Toward Eurasian SubMillimeter Telescopes: The concept of multicolor subTHz MKID-array demo camera MUSICAM and its instrumental testing,” in Proc. of the 7th All Russian Microwave Conference (RMC) (Russia, Moscow, 2020), p. 41–46. https://doi.org/10.1109/RMC50626.2020.9312270

  4. G. M. Bubnov, E. B. Abashin, Y. Y. Balega, O. S. Bolshakov, S. Y. Dryagin, V. K. Dubrovich, A. S. Marukhno, V. I. Nosov, V. F. Vdovin, and I. I. Zinchenko, “Searching for new sites for THz Observations in Eurasia,” IEEE Transac. Terahertz Sci. Technol. 5 (1), 64–72 (2015).

    Article  ADS  Google Scholar 

  5. G. Bubnov, V. Vdovin, V. Khaikin, P. Tremblin, and P. Baron, “Analysis of variations in factors of specific absorption of sub-Terahertz waves in the Earth’s atmosphere,” Proc. of the 7th All Russian Microwave Conference (RMC) (Russia, Moscow, 2020), p. 229–232. https://doi.org/10.1109/RMC50626.2020.9312314

  6. L. T. Maud, R. P. J. Tilanus, T. A. van Kempen, M. R. Hogerheijde, M. Schmalzl, I. Yoon, Y. Contreras, M. C. Toribio, Y. Asaki, W. R. F. Dent, E. Fomalont, and S. Matsushita, “Phase correction for ALMA. Investigating water vapour radiometer scaling: The long-baseline science verification data case study,” Astron. Astrophys. 605, A121 (2017).

    Article  ADS  Google Scholar 

  7. V. P. Lukin, P. A. Konyaev, A. G. Borzilov, and E. L. Soin, “Adaptive imaging and stabilization system for a large-aperture solar telescope,” Opt. Atmos. Okeana 34 (3), 207–217 (2021). https://doi.org/10.15372/AOO20210307

    Article  Google Scholar 

  8. N. N. Botygina, D. Yu. Kolobov, P. G. Kovadlo, V. P. Lukin, S. A. Chuprakov, and A. Yu. Shikhovtsev, “Two-mirror adaptive system for correction of atmospheric disturbances of the large solar vacuum telescope,” Atmos. Ocean. Opt. 31 (6), 709–717 (2018).

    Article  Google Scholar 

  9. N. N. Botygina, O. N. Emaleev, P. A. Konyaev, E. A. Kopylov, and V. P. Lukin, “Development of elements for an adaptive optics system for solar telescope,” J. Appl. Remote Sens. 12 (4), 042403 (2018).

    Article  ADS  Google Scholar 

  10. Z. Xiong, B. Zhang, J. Sang, X. Sun, and X. Wei, “Fusing precipitable water vapor data in China at different timescales using an artificial neural network,” Remote Sens. 13, 1720 (2021).

    Article  ADS  Google Scholar 

  11. Q. He, Z. Shen, M. Wan, and L. Li, “Precipitable water vapor converted from GNSS-ZTD and ERA5 datasets for the monitoring of tropical cyclones,” IEEE Access 8, 87 275–87 290 (2020).

    Article  Google Scholar 

  12. D. Jiao, N. Xu, and F. Yang, and K. Xu, “Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China,” Sci. Rep. 11, 17956 (2021).

    Article  ADS  Google Scholar 

  13. Y. Zhang, C. Cai, B. Chen, and W. Dai, “Consistency evaluation of precipitable water vapor derived from ERA5, ERA-Interim, GNSS, and radiosondes over China,” Radio Sci. 54, 561–571 (2019).

    Article  ADS  Google Scholar 

  14. M. Bevis, S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, “GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system,” J. Geophys. Res. 97 (D14), 787–801 (1992).

    Article  Google Scholar 

  15. K. M. Antonovich, Satellite Radio Navigation Systems in Geodesy. Part 1 (Kartgeotsentr, Moscow, 2005) [in Russian].

    Google Scholar 

  16. K. M. Antonovich, Satellite Radio Navigation Systems in Geodesy. Part 3 (Kartgeotsentr, Moscow, 2006) [in Russian]

    Google Scholar 

  17. T. A. Herring, R. W. King, and S. C. McClusky, Introduction to GAMIT/GLOBK (Massachusetts Inst. Technol., Cambridge, MA, 2010).

    Google Scholar 

  18. https://istina.msu.ru/equipment/card/9351754. Cited October 18, 2021.

  19. J. Boehm, B. Werl, and H. Schuh, “Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for medium-range weather forecasts operational analysis data,” J. Geophys. Res. 111 (B2), B02406 (2006).

    Article  ADS  Google Scholar 

  20. Z. Wang, M. Sun, X. Yao, L. Zhang, and H. Zhang, “Spatiotemporal variations of water vapor content and its relationship with meteorological elements in the Third Pole,” Water 13 (13), 1856 (2021).

    Article  Google Scholar 

  21. O. O. Ayantobo, J. Wei, B. Kang, T. Li, and G. Wang, “Spatial and temporal characteristics of atmospheric water vapour content and its relationship with precipitation conversion in China during 1980–2016,” Int. J. Climatol. 41 (3), 1747–1766 (2021).

    Article  Google Scholar 

  22. S. Z. Ziv, Y. Yair, P. Alpert, L. Uzan, and Y. Reuveni, “The diurnal variability of precipitable water vapor derived from GPS tropospheric path delays over the Eastern Mediterranean,” Atmos. Res. 249, 105307 (2021).

    Article  Google Scholar 

  23. I. Bordi, K. Fraedrich, A. Sutera, and X. Zhu, “Ground-based GPS measurements: Time behavior from half-hour to years,” Theor. Appl. Climatol. 115, 615–625 (2014).

    Article  ADS  Google Scholar 

  24. E. Lees, O. Bousquet, D. Roy, and J. L. D. Bellevue, “Analysis of diurnal to seasonal variability of integrated water vapour in the South Indian Ocean basin u-sing ground-based GNSS and fifth-generation ECMW-F reanalysis (ERA5) data,” Quant. J. Roy. Meteorol. Soc. 147 (734), 229–248 (2021).

    Article  ADS  Google Scholar 

  25. Y. Yao, L. Shan, and Q. Zhao, “Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application,” Sci. Rep. 7 (1), 12465 (2017).

    Article  ADS  Google Scholar 

  26. J. Wang, A. Dai, and C. Mears, “Global water vapor trend from 1988 to 2011 and its diurnal asymmetry based on GPS, radiosonde, and microwave satellite measurements,” J. Clim. 29 (14), 5205–5222 (2016).

    Article  ADS  Google Scholar 

  27. R. C. Ssenyunzi, B. Oruru, F. M. D`ujanga, E. Realini, S. Barindelli, G. Tagliaferro, A. von Engeln, and N. vad de Giesen, “Performance of ERA5 data in retrieving precipitable water vapour over East African tropical region,” Adv. Space Res. 65, 1877–1893 (2020).

    Article  ADS  Google Scholar 

  28. V. Milyukov, A. Kopaev, V. Zharov, A. Mironov, A. Myasnikov, M. Kaufman, and D. Duev, “Monitoring crustal deformations in the Northern Caucasus using a high precision long base laser strainmeter and the GPS,” J. Geodyn. 49 (3-4), 216–223 (2010).

    Article  Google Scholar 

  29. V. K. Milyukov, A. P. Mironov, E. A. Rogozhin, and G. M. Steblov, “Velocities of contemporary movements of the Northern Caucasus estimated from GPS observations,” Geotectonics 49 (3), 210–218 (2015).

    Article  ADS  Google Scholar 

  30. V. K. Milyukov, A. P. Mironov, A. N. Ovsyuchenko, E. A. Rogozhin, A. V. Gorbatikov, V. N. Drobyshev, Kh. M. Khubaev, and A. V. Nikolaev, “Velocities of present-day horizontal movements in the central sector of the Greater Caucasus according to GPS observations and their relation to tectonics and the deep structure of the Earth’s crust,” Dokl. Earth Sci. 481 (1), 879–882 (2018).

    Article  ADS  Google Scholar 

  31. M. I. Agafonov, I. T. Bubukin, I. I. Zinchenko, A. L. Pankratov, I. V. Rakut, G. M. Bubnov, V. F. Vdovin, V. I. Nosov, R. V. Gorbunov, and V. A. Lapchenko, “The results of observing the astroclimate on the Crimean Peninsula in the shortwave part of the millimeter wavelength range,” Astrophys. Bull. 73 (3), 387–392 (2018).

    Article  ADS  Google Scholar 

  32. A. V. Lapinov, S. A. Lapinova, and L. Yu. Petrov, “On the benefits of the Eastern Pamirs for sub-mm astronomy,” Proc. SPIE—Int. Soc. Opt. Eng., 11453 (2020). https://doi.org/10.1117/12.2560250

Download references

ACKNOWLEDGMENTS

We are grateful to Chief Executive Officer S.D. Sorokin and employees of the Industrial Geodetic Systems R&D for the presented GNSS data of the base station communication network of the Company.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation. A.P. Mironov acknowledges the Fundamental and Applied Space Research Interdisciplinary Scientific and Educational School of Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Shikhovtsev, V. B. Khaikin or P. G. Kovadlo.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shikhovtsev, A.Y., Khaikin, V.B., Mironov, A.P. et al. Statistical Analysis of the Water Vapor Content in North Caucasus and Crimea. Atmos Ocean Opt 35, 168–175 (2022). https://doi.org/10.1134/S1024856022020105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022020105

Keywords:

Navigation