Skip to main content
Log in

Dust Haze over the North China Plain

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Based on monitoring from AERONET stations in the Beijing region in the twenty first century, it is found that, during transport of dust haze with the aerosol optical depth up to 4.0–4.5, the optical and microphysical characteristic of dust aerosol are determined by coarse particles with modal radii of ∼2–4 μm and a mass content of dust aerosol reaching 11–12 g/m2. Data of monitoring from the Beijing and Xinglong stations in April 2006 and from the Beijing-CAMS station in March 2021 indicate that the imaginary part of the refractive index of dust aerosol under the conditions of optically dense dust haze is comparatively small, from 0.0005 to 0.003, with 54 and 77% detection probabilities at the Beijing and Xinglong stations, respectively, in April 2006. The analysis of the spatial distribution of the aerosol optical depth and the wind field reanalysis data showed that the long-range dust aerosol transport from Takla-Makan desert to North China Plain (NCP) was observed in April 2006. The aerosol radiative forcings at the top and bottom of the atmosphere are calculated for the period of dust haze propagation on the territory of China. During intense transports of dust aerosol to the Beijing region, the efficiency of the aerosol radiative forcing is shown to be 85 W/m2 at the top of the atmosphere and 135–140 W/m2 at the bottom of the atmosphere. Using the wind field reanalysis data, aerosol optical depth satellite monitoring data, and retrievals of the optical and microphysical characteristics of the tropospheric aerosol, we estimated the dust aerosol mass flux from Takla-Makan Desert to NCP (∼1.5 ton/s) in April 2006 and the daily total dust aerosol mass transport (∼1.5 million tons).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. Mahowald, S. Albani, J. F. Kok, S. Engelstaedter, R. Scanza, D. S. Ward, and M. G. Flanner, “The size distribution of desert dust aerosols and its impact on the Earth system,” Aeolian Res. 15, 53–71 (2014).

    Article  ADS  Google Scholar 

  2. J. F. Kok, E. J. Parteli, T. I. Michaels, and D. Bou Karam, “The physics of wind blown sand and dust,” Rep. Prog. Phys. 75, 1–119 (2012).

    Article  Google Scholar 

  3. R. Miller, I. Tegen, and J. Perlwitz, “Surface radiative forcing by soil dust aerosols and the hydrologic cycle,” J. Geophys. Res. 109D, 04203 (2004).

    ADS  Google Scholar 

  4. Y. Balkanski, M. Schulz, T. Claquin, and S. Guibert, “Re-evaluation of mineral aerosol radiative forcings suggest a better agreement with satellite and AERONET data,” Atmos. Chem. Phys. 7, 81–95 (2007).

    Article  ADS  Google Scholar 

  5. P. DeMott, K. Sassen, M. Poellot, D. Baumgardner, D. Rogers, S. Brooks, A. Prenni, and S. Kreidenweis, “African dust aerosols as atmospheric ice nuclei,” Geophys. Rev. Lett. 30 (14), 1732 (2003).

    Article  ADS  Google Scholar 

  6. B. A. Mather, J. M. Prospero, D. Mackie, D. Gaiero, P. P. Hesse, and Y. Balkanski, “Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum,” Earth Sci. Rev. 99, 61–97 (2010).

    Article  ADS  Google Scholar 

  7. B. Brunekreef and S. T. Holgate, “Air pollution and health,” Lancet 360, 1233–1242 (2002).

    Article  Google Scholar 

  8. S. A. Morman and G. S. Plumlee, “The role of airborne mineral dusts in human disease,” Aeolian Res. 9, 203–212 (2013).

    Article  ADS  Google Scholar 

  9. Y. Shao, Physics and Modeling of Wind Erosion (Springer, New York, 2000).

    Google Scholar 

  10. S. C. Alfaro, A. Gaudichet, L. Gomes, and M. Maille, “Modeling the size distribution of a soil aerosol produced by sandblasting,” J. Geophys. Res. 102D, 11 239–11 249 (1997).

    Article  ADS  Google Scholar 

  11. Y. Shao, M. R. Raupach, and P. A. Findlater, “The effect of saltation bombardment on the entrainment of dust by wind,” J. Geophys. Res. 98D, 12719–12726 (1993).

    Article  ADS  Google Scholar 

  12. D. A. Gillette, D. A. Blifford, and D. W. Fryrear, “The influence of wind velocity on the size distributions of aerosols generated by the wind erosion of soils,” J. Geophys. Res. 79, 4068–4075 (1974).

    Article  ADS  Google Scholar 

  13. G. A. Loosmore and J. R. Hunt, “Below-threshold, nonabraded dust resuspension,” J. Geophys. Res. 105D, 671 (2000).

    Google Scholar 

  14. O. G. Chkhetiani, E. B. Gledzer, M. S. Artamonova, and M. A. Iordanskii, “Dust resuspension under weak wind conditions: Direct observations and model,” Atmos. Chem. Phys. 12, 5147–5162 (2012).

    Article  ADS  Google Scholar 

  15. M. Klose and Y. Shao, “Stochastic parameterization of dust emission and application to convective atmospheric conditions,” Atmos. Chem. Phys. 12, 7309–7320 (2012).

    Article  ADS  Google Scholar 

  16. X. Y. Li, M. Klose, Y. Shao, and H. S. Zhang, “Convective Turbulent Dust Emission (CTDE) observed over Horqin Sandy Land area and validation of CTDE scheme,” J. Geophys. Res.: Atmos. 119, 9980–9992 (2014).

    Article  ADS  Google Scholar 

  17. N. V. Vazaeva, O. G. Chkhetiani, and L. O. Maksimenkov, “Organized roll circulation and transport of mineral aerosols in the atmospheric boundary layer,” Izv. Atmos. Ocean. Phys. 55 (2), 152–166 (2019).

    Article  Google Scholar 

  18. E. A. Malinovskaya and O. G. Chkhetiani, “On the conditions for wind removal of soil particles,” Comput. Mech. Complex Media 13 (2), 175–188 (2020).

    Google Scholar 

  19. R. Swap, M. Garstang, S. Greco, R. Talbot, and P. Kallbelrg, “Saharan dust in the Amazon basin,” Tellus 44, 133–144 (1992).

    Article  Google Scholar 

  20. A. Grini and C. Zender, “Roles of saltation, sandblasting, and wind speed variability on mineral dust aerosol size distribution during the Puerto Rican Dust Experiment (PRIDE),” J. Geophys. Res. 109, D07202 (2004).

    Article  ADS  Google Scholar 

  21. H. In and S. U. Park, “Estimation of dust emission amount for a dust storm event occurred in April 1998,” Water Air Soil Pollut. 148, 201–221 (2003).

    Article  ADS  Google Scholar 

  22. M. Liu, D. L. Westphal, and S. Wang, “A high-resolution numerical study of the asian dust storms of April 2001,” J. Geophys. Res. D108, 8653 (2003).

    Article  ADS  Google Scholar 

  23. A. H. Papayannis, U. Zhang, V. Amiridis, H. B. Ju, and E. Chourdakis, “Extraordinary dust event over Beijing, China, during April 2006. Lidar, Sun photometric, satellite observations and model validation,” Geophys. Res. Lett. 34, L07806 (2007).

    Article  ADS  Google Scholar 

  24. G. I. Gorchakov, A. V. Karpov, I. A. Gorchakova, R. A. Gushchin, and O. I. Datsenko, “Smog and smoke haze over the North China plain in June 2007,” Atmos. Ocean. Opt. 32 (6), 643–649 (2019).

    Article  Google Scholar 

  25. G. I. Gorchakov, G. S. Golitsyn, S. A. Sitnov, A. V. Karpov, I. A. Gorchakova, R. A. Gushchin, and O. I. Datsenko, “Large-scale hazes over Eurasia in July 2016,” Dokl. Akad. Nauk 482 (2), 209–212 (2018).

    Google Scholar 

  26. G. I. Gorchakov, S. A. Sitnov, A. V. Karpov, I. A. Gorchakova, R. A. Gushchin, and O. I. Datsenko, “Eurasian large-scale hazes in summer 2016,” Izv. Atmos. Ocean. Phys. 55 (3), 261–270 (2019).

    Article  Google Scholar 

  27. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, I. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, N. Nakajima, F. Lavenu, L. Jakowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66 (1), 1–16 (1998).

    Article  ADS  Google Scholar 

  28. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105 (D16), 20 673–20 696 (2000).

    Article  ADS  Google Scholar 

  29. O. Dubovik, B. Holben, T. Eck, A. Smirnov, Y. Kaufman, M. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).

    Article  ADS  Google Scholar 

  30. P. B. Russell, J. B. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. Quinn, C. M. Carrico, M. Rood, E. Öström, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609–619 (2002).

    Article  ADS  Google Scholar 

  31. Y. Feng, V. Ramanathan, and V. R. Kotamarthi, “Brown carbon: A significant atmospheric absorber of solar radiation?,” Atmos. Chem. Phys. 13, 8607–8621 (2013).

    Article  ADS  Google Scholar 

  32. G. I. Gorchakov, A. V. Vasil’ev, K. S. Verichev, E. G. Semutnikova, and A. V. Karpov, “Finely dispersed brown carbon in a smoggy atmosphere,” Dokl. Earth Sci. 471 (1), 1158–1163 (2016).

    Article  ADS  Google Scholar 

  33. G. I. Gorchakov, A. V. Karpov, A. V. Vasiliev, and I. A. Gorchakova, “Brown and black carbons in megacity smogs,” Atmos. Ocean. Opt. 30 (3), 248–254 (2017).

    Article  Google Scholar 

  34. G. I. Gorchakov, S. A. Sitnov, E. G. Semutnikova, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, N. V. Pankratova, T. Ya. Ponomareva, G. A. Kuznetsov, O. V. Loskutova, E. A. Kozlovtseva, and K. V. Rodina, “Large-scale smoke in the European Russia and Belarus in July 2016,” Issled. Zemli Kosmosa, No. 1, 27–42 (2018).

    Google Scholar 

  35. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS, advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Rem. Sens. 27, 145–153 (1989).

    Article  ADS  Google Scholar 

  36. R. C. Levy, L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, “Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance,” J. Geophys. Res. 112, D13211 (2007).

    Article  ADS  Google Scholar 

  37. I. I. Mokhov and I. A. Gorchakova, “Radiation and temperature effects of summer fires in 2002 in the Moscow region,” Dokl. Earth Sci. 400 (1), 160–163 (2005).

    Google Scholar 

  38. I. A. Gorchakova and I. I. Mokhov, “The radiative and thermal effects of smoke aerosol over the region of Moscow during the summer fires of 2010,” Izv. Atmos. Ocean. Phys. 48 (5), 496–503 (2012).

    Article  Google Scholar 

  39. G. I. Gorchakov, S. A. Sitnov, M. A. Sviridenkov, E. G. Semoutnikova, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, K. S. Verichev, G. A. Kurbatov, and T. Ya. Ponomareva, “Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012,” Int. J. Remote Sens. 35 (15), 5698–5721 (2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the AERONET team for providing the possibility to use the monitoring data and O.G. Chkhetiani for discussion of results.

Funding

This work was supported by the Russian Science Foundation (grant no. 20-17-00214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Gorchakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorchakov, G.I., Datsenko, O.I., Kopeikin, V.M. et al. Dust Haze over the North China Plain. Atmos Ocean Opt 35, 125–132 (2022). https://doi.org/10.1134/S1024856022020038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022020038

Keywords:

Navigation