Skip to main content
Log in

Ultraviolet Radiation Detector Based on Artificial Periclase Nanocrystals (MgO)

  • OPTICAL SOURCES AND RECEIVERS FOR ENVIRONMENTAL STUDIES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

We describe a method of ultraviolet radiation dosimetry based on recording the photostimulated transition Mn3+ + e → Мn2+ in ultrafine magnesium oxide with a periclase crystal structure. It is shown that this photoeffect can be recorded using the method of electron paramagnetic resonance (EPR). The passive integrating ultraviolet detector (UV detector) is suggested to be developed on the basis of tubes with ultrafine magnesium oxide and through recording EPR lines of Mn2+ ions after these tubes are exposed to light. This new UV detector was tested in comparative estimation of layer-by-layer variations in the ultraviolet transparency of snow cover. It is discussed how the powder UV detector can be used in a passive monitoring of ultraviolet radiation incident on the Earth’s surface in the framework of studying the stability of tundra ecosystems under the conditions of stratospheric ozone depletion in the Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Juzeniene and J. Moan, “Beneficial effects of UV radiation other than via vitamin D production,” Dermato-Endocrinology, No. 4, 109–117 (2012).

    Article  Google Scholar 

  2. M. M. Caldwell, L. O. Bjorn, J. F. Bornman, S. D. Flint, G. Kulandaivelu, A. H. Teramura, and M. Tevini, “Effects of increased solar ultraviolet radiation on terrestrial ecosystems,” J. Photochem. Photobiol. B, No. 46, 40–52 (1998).

  3. D. P. Hader, H. D. Kumar, R. C. Smith, and R. C. Worrest, “Effects of solar UV radiation on aquatic ecosystems and interactions with climate change,” Photochem. Photobiol. Sci., No. 6, 267–285 (2007).

  4. N. E. Chubarova, E. Yu. Zhdanova, V. U. Khattatov, and P. N. Vargin, “Topical problems in the study of UV radiation and the ozone layer,” Vestn. Ross. Akad. Nauk 86 (9), 839–846 (2016). https://doi.org/10.7868/S0869587316050030

    Article  Google Scholar 

  5. V. V. Zuev, N. E. Zueva, E. M. Korotkova, and A. V. Pavlinsky, “Impact of ozone depletion on degradation processes of coniferous forests in southern regions of Siberia,” Atmos. Ocean. Opt. 30 (4), 342–348 (2017).

    Article  Google Scholar 

  6. R. M. Lucas, S. Yazar, A. R. Young, M. Norval, F. R. de Gruijl, Y. Takizawa, L. E. Rhodes, C. A. Sinclair, and R. E. Neale, “Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate,” Photochem. Photobiol. Sci., No. 18, 641–680 (2019).

  7. A. R. Webb, “Measuring UV radiation: A discussion of dosimeter properties, uses and limitations,” J. Photochem. Photobiol. B 31, 9–13 (1995).

    Article  Google Scholar 

  8. I. Horkay, N. Wikonkal, J. Patko, G. Bazsa, M. Beck, A. Ferenczi, Z. Nagy, M. Racz, and T. Szalay, “SUNTEST: A chemical UVB radiation dosimeter,” J. Photochem. Photobiol. B 31, 79–82 (1995).

    Article  Google Scholar 

  9. A. Mills, P. Grosshans, and M. McFarlane, “UV dosimeters based on neotetrazolium chloride,” J. Photochem. Photobiol., A 201 (2–3), 136–141 (2009).

    Article  Google Scholar 

  10. A. F. Saad, E. M. Sedqy, and R. M. Ahmed, “Effect of UVC radiation on the optical properties of thermally treated CR-39 polymer films: A new approach for the use of CR-39 As an optical dosimeter,” Radiat. Phys. Chem. 179 (2021). https://doi.org/10.1016/j.radphyschem.2020.109253

  11. L. E. Quintern, G. Horneck, U. Eschweiler, and H. Buecker, “A biofilm used as ultraviolet dosimeter,” Photochem. Photobiol. 55 (3), 389–395 (1992).

    Article  Google Scholar 

  12. P. Rettberg, R. Sief, and G. Horneck, “The DLR-biofilm as personal UV dosimeter,” in Fundamentals for the Assessment of Risks from Environmental Radiation, Ed. by C. Baumstark-Khan, S. Kozubek, and G. Horneck (Springer, Dordrecht, 1999). https://doi.org/10.1007/978-94-011-4585-5_46

    Book  Google Scholar 

  13. T. C. Wang, “A simple convenient biological dosimeter for monitoring solar UV-B radiation,” Biochem. Biophys. Res. Commun. 177 (1), 48–53 (1991).

    Article  Google Scholar 

  14. R. M. Tyrrell, “Biological dosimetry and action spectra,” J. Photochem. Photobiol. B 31 (1–2), 35–41 (1995).

    Article  Google Scholar 

  15. A. Berces, A. Fekete, S. Gaspar, P. Grof, P. Rettberg, G. Horneck, and G. Ronto, “Biological UV dosimeters in the assessment of the biological hazard from environmental radiation,” J. Photochem. Photobiol. B 53 (1–3), 36–43 (1999).

    Article  Google Scholar 

  16. A. Davis, G. H. W. Deane, and B. L. Diffey, “Possible dosimeter for ultraviolet radiation,” Nature 261, 169–170 (1976).

    Article  ADS  Google Scholar 

  17. A. V. Parisi, M. G. Kimlin, D. J. Turnbull, and J. Macaranas, “Potential of phenothiazine as a thin film dosimeter for UVA exposures,” Photochem. Photobiol. Sci. 4 (11), 907–910 (2005).

    Article  Google Scholar 

  18. J. Turner, A. V. Parisi, and D. J. Turnbull, “Dosimeter for the measurement of plant damaging solar UV exposures,” Agric. For. Meteor. 149 (8), 1301–1306 (2009).

    Article  Google Scholar 

  19. A. V. Parisi, A. Amar, and D. P. Igoe, “Long-term UV dosimeter based on polyvinyl chloride for plant damage effective UV exposure measurements,” Agric. For. Meteorol. 243 (15), 68–73 (2017).

    Article  ADS  Google Scholar 

  20. M. P. Tentyukov and V. P. Lyutoev, “EPR-spectroscopy of dry aerosols,” Atmos. Ocean. Opt. 21 (9), 684–687 (2008).

    Google Scholar 

  21. S. A. Al’tshuller and B. M. Kozyrev, Electron Paramagentic Resonance of Compounds of Elements from Intermediate Groups (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  22. I.S. Andreeva et al., Siberian Aerosols, Ed. by K.P. Kutsenogii (Publishing House of SB RAS, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  23. L. A. Hollingbery and T. Z. R. Hull, “The thermal decomposition of huntite and hydromagnesite—a review,” Thermochim. Acta 509, 1–11 (2010).

    Article  Google Scholar 

  24. M. Ikeya, New Application of Electron Spin Resonance (World Scientific Publishing, Singapore, 1993).

    Book  Google Scholar 

  25. M. Chiesa, M. C. Paganini, and E. Giamello, “EPR of charge carries stabilized at the surface of metal oxides,” Appl. Magn. Reson. 37, 605–618 (2010).

    Article  Google Scholar 

  26. J. J. Davies, S. R. P. Smith, and J. E. Wertz, “Electron paramagnetic resonance of tetravalent manganese ions at tetragonal and octahedral sites in MgO,” Phys. Rev. 178, 608–612 (1969).

    Article  ADS  Google Scholar 

  27. X.-X. Wu, W. Fang, W.-L. Feng, and W.-C. Zheng, “Study of EPR parameters and defect structure for two tetragonal impurity centers in MgOrCr3+ and MgO : Mn4+ crystals,” Appl. Magn. Reson. 35, 503–510 (2009).

    Article  Google Scholar 

  28. A.-E. Valia and J. J. Roomy, “A novel ESR method based on dilute solid solution of Mn3+/Mn2+ ions in MgO for detecting spillover of hydrogen from noble metals,” J. Mol. Catal. A: Chem. 159, 429–432 (2000).

    Article  Google Scholar 

  29. M. Galustashvili, T. Kalabegishvili, A. Kurasbediani, V. Kvachadze, and S. Sobolevskaya, “EPR investigation of the accumulation of F+ centers in irradiated MgO : Mn crystals,” Appl. Magn. Reson. 28, 393–399 (2005).

    Article  Google Scholar 

  30. B. D. Belan, Tropospheric Ozone (Publishing House of IAO SB RAS, Tomsk, 2010). [in Russian].

    Google Scholar 

  31. R. E. Neale, P. W. Barnes, T. M. Robson, P. J. Neale, C. E. Williamson, R. G. Zepp, S. R. Wilson, S. Madronich, A. L. Andrady, A. M. Heikkila, G. N. Bernhard, A. F. Bais, P. J. Aucamp, A. T. Banaszak, J. F. Bornman, L. S. Bruckman, S. N. Byrne, B. Foereid, D.-P. Hader, L. M. Hollestein, W.-C. Hou, S. Hylander, M. A. K. Jansen, A. R. Klekociuk, J. B. Liley, J. Longstreth, R. M. Lucas, J. Martinez-Abaigar, K. McNeikk, C. M. Olsen, K. K. Pandey, L. E. Rhodes, S. A. Robinson, K. C. Rose, T. Schikowski, K. R. Solomon, B. Sulzberger, J. E. Ukebor, Q.-W. Wang, S.-A. Wangberg, C. C. White, S. Yazar, P. J. Young, L. Zhu, and M. Zhu, “Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP environmental effects assessment panel, update 2020,” Photochem. Photobiol. Sci. 20, 1–67 (2021).

    Article  Google Scholar 

  32. V. V. Zuev, E. S. Savelieva, and A. V. Pavlinskiy, “Unprecedented ozone depletion in the Arctic stratosphere during winter–spring of 2020,” Doklady Earth Sci. 495 (2), 901–904 (2020).

    Article  ADS  Google Scholar 

  33. Z. D. Lawrence, J. Perlwitz, A. H. Butler, G. L. Manney, P. A. Newman, S. H. Lee, and E. R. Nash, “The remarkably strong arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic oscillation and ozone loss,” J. Geophys. Res.: Atmos. 125 (22), e2020JD033271 (2020). https://doi.org/10.1029/2020JD033271

  34. G. Bernhard, G. L. Manney, K. A. Lakkala, and B. Johnsen, J.-U. Grooß, I. Ialongo, B. Johnsen, K. Lakkala, G. L. Manney, R. Muller, and T. Svendby, “Record-breaking increases in Arctic solar ultraviolet radiation caused by exceptionally large ozone depletion in 2020,” Geophys. Rev. Lett. 47 (24), e2020GL090844 (2020). https://doi.org/10.1029/2020GL090844

Download references

ACKNOWLEDGMENTS

The experimental part of the work was carried out at Center for Collective Use Geonauka (Institute of Geology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences).

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences and N.P. Yushkin Institute of Geology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. P. Tentyukov, V. P. Lyutoev, B. D. Belan, D. V. Simonenkov or O. S. Golovataya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tentyukov, M.P., Lyutoev, V.P., Belan, B.D. et al. Ultraviolet Radiation Detector Based on Artificial Periclase Nanocrystals (MgO). Atmos Ocean Opt 35, 89–96 (2022). https://doi.org/10.1134/S1024856022010122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022010122

Keywords:

Navigation