Skip to main content

Parameters of Wave Processes from GNSS Data


Mesoscale spatiotemporal variations with periods of 3–60 days are studied based on the remote sensing data from the GLONASS GPS receiver network in 2012–2015. The main modes of mesoscale variations are found; empirical distributions of their amplitudes, phase velocities, and spatial scales are constructed. The seasonal dependences of these parameters are found. Using independent data from meteorological stations and ERA5 reanalysis, it is shown that variations in the zenith tropospheric delay of radio waves, integral moisture content of the atmosphere, surface refractive index, and wind speed in the troposphere are determined by the same mesoscale atmospheric processes, with the most probable wavelengths of no more than 8000 km.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. P. N. Antokhin, O. Yu. Antokhina, E. V. Devyatova, and Yu. V. Martynova, “Atmospheric blockings in Western Siberia. Part 2. Long-term variations in blocking frequency and their relation with climatic variability over Asia,” Rus. Meteorol. Hydrol. 43 (3), 143–151. 2018.

    Article  Google Scholar 

  2. K. Yu. Sukovatov and N. N. Bezuglova, “Data interpretation for weather extremes on the basis of quasiresonance hypothesis of blocking formation,” Izv. Altaiskogo Gos. Univ. 102 (4), 36–40 (2018).

    Google Scholar 

  3. P. N. Antokhin, O. Yu. Antokhina, M. Yu. Arshinov, B. D. Belan, D. K. Davydov, A. V. Kozlov, A. V. Fofonov, M. Sasakawa, and T. Machida, “The impact of atmospheric blocking in Western Siberia on changes in carbon dioxide and methane concentrations in winter,” Opt. Atmos. Okeana 32 (3), 221–227 (2019).

    Google Scholar 

  4. S. P. Smyshlyaev, A. I. Pogorel’tsev, and V. Ya. Galin, “Influence of wave activity on the composition of the polar stratosphere,” Geomagn. Aeron. (Engl. Transl.) 56 (1), 95–109 (2016).

  5. O. G. Khutorova, “Correlation between variations of the surface concentration of atmospheric constituents in two industrial regions of Tatarstan,” Opt. Atmos. Okeana 17 (5-6), 470–473 (2004).

    Google Scholar 

  6. D. M. Kabanov, T. R. Kurbangaliev, T. M. Rasskazchikova, S. M. Sakerin, and O. G. Khutorova, “The influence of synoptic factors on variations of atmospheric aerosol optical depth under Siberian conditions,” Atmos. Ocean. Opt. 24 (6) 543–553 (2011).

    Article  Google Scholar 

  7. O. G. Khutorova, V. E. Khutorov, and G. M. Teptin, “Interannual variability of surface and integrated water vapor and atmospheric circulation in Europe,” Atmos. Ocean. Opt. 31 (5), 486–491 (2018).

    Article  Google Scholar 

  8. P. N. Vargin, ”Stratosphere-troposphere dynamical coupling over boreal extratropics during the sudden stratospheric warming in the Arctic in January–February 2017,” Rus. Meteorol. Hydrol. 43 (5), 227–287 (2018).

    Article  Google Scholar 

  9. E. S. Nesterov, “The Madden–Julian oscillation effect on atmospheric circulation in the Northern Hemisphere extratropical latitudes,” Gidrometeorol. Issledovaniya Prognozy, No. 4, 63–73 (2018).

    Google Scholar 

  10. S. Jevrejeva, J. C. Moore, and A. Grinsted, “Oceanic and atmospheric transport of multiyear El Nino—Southern Oscillation (ENSO) signatures to the polar regions,” Geophys. Rev. Lett. 31 (L24210), 1–4 (2004).

    Article  Google Scholar 

  11. J. R. Holton, An Introduction to Dynamic Meteorology (Academic Press, Cambridge, 2004).

    Google Scholar 

  12. V. V. Kalinnikov and O. G. Khutorova, “Diurnal variations in integrated water vapor derived from a GPS ground network in the Volga-Ural region of Russia,” Ann. Geophys. 35 (3), 453–464 (2017).

    Article  ADS  Google Scholar 

  13. B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning System. Theory and Practice (Springer, Wien; New York, 1994).

    Book  Google Scholar 

  14. V. V. Kalinnikov, O. G. Khutorova, and G. M. Teptin, “Determination of troposphere characteristics using signals of satellite navigation systems,” Izv., Atmos. Ocean. Phys. 48 (6), 631–638 (2012).

    Article  Google Scholar 

  15. M. Bevis and S. Businger, “GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system,” J. Geophys. Res. 97 (D14), 15787–15801 (1992).

    Article  ADS  Google Scholar 

  16. G. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79 (1), 61–78 (1998).

    Article  ADS  Google Scholar 

  17. G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications (Holden Day, 1968).

    MATH  Google Scholar 

  18. O. G. Khutorova, “A technique for investigating the effects of planetary waves on aerosol optical thickness variations,” Atmos. Ocean. Opt. 22 (2), 198–202 (2009).

    Article  Google Scholar 

  19. H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, SabaterJ. Munoz, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J.-N. Thépaut, ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).!/dataset/ reanalysis-era5-pressure-levels?tab=overview. Cited December 17, 2019.

  20. E. Leman, Statistical Hypothesis Testing (Nauka, Moscow, 1979) [inRussian].

    Google Scholar 

  21. O. N. Bylygina, V. M. Veselov, V. N. Razuvaev, and T. M. Aleksandrova, Description of the Set of Expedited Data on Main Meteorological Parameters at Russian Stations. Certificate of State Registration of Databases No. 2 014 620 549.

  22. R. A. Madden, “Large-scale, free Rossby waves in the atmosphere—an update,” Tellus 59A, 571–590 (2007).

    Article  ADS  Google Scholar 

  23. Z. Jiang, S. B. Feldstein, and S. Lee, “The relationship between the Madden–Julian oscillation and the North Atlantic oscillation,” Q. J. R. Meteorol. Soc. 143 (702), 240–250 (2017).

    Article  ADS  Google Scholar 

  24. A. E. Gill, Atmosphere–Ocean Dynamics (University of Cambridge, Cambridge, England; Academic Press, 1982).

  25. A. S. Monin, Weather Forecast as a Physical Problem (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  26. L. A. Diky and G. S. Golitsyn, “Calculation of the Rossby wave velocities,” Tellus 20 (1), 314–317 (1968).

    Article  ADS  Google Scholar 

  27. A. N. Vul’fson, “Description of large-scale motions of the mean level of the atmosphere and of Rossby waves in terms of convection theory,” Izv. Acad. Sci. USSR. Atmos. Ocean. Phys. 25 (4), 262–268. 1989.

    Google Scholar 

  28. V. V. Guryanov, A. V. Eliseev, I. I. Mokhov, and Yu. P. Perevedentsev, “Wave activity and its changes in the troposphere and stratosphere of the Northern Hemisphere in winters of 1979–2016,” Izv., Atmos. Ocean. Phys. 54 (2), 133–146 (2018).

    Article  Google Scholar 

  29. E. Chang, “The structure of baroclinic wave packets,” J. Atmos. Sci. 58, 16941713 (2001).

    Google Scholar 

  30. P. N, Vargin, A. N. Luk’yanov, and A. V. Gan’shin, “Investigation of dynamic processes in the period of formation and development of the blocking anticyclone over European Russia in summer 2010,” Izv., Atmos. Ocean. Phys. 48 (5), 476–495 (2012).

    Article  Google Scholar 

Download references


We are grateful to the Copernicus Knowledge Base for providing access to the climate data store.


The work was supported by the Kazan Federal University Strategic Academic Leadership Program.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to O. G. Khutorova, V. E. Khutorov or G. E. Korchagin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khutorova, O.G., Khutorov, V.E. & Korchagin, G.E. Parameters of Wave Processes from GNSS Data. Atmos Ocean Opt 35, 52–56 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • GNSS
  • GPS
  • waves in the atmosphere